TO: James L. App, City Manager

FROM: Doug Monn, Public Works Director

SUBJECT: Ordinance Establishing the Rules and Regulations for Sewer System Operations

and Discharge of Industrial (Non-Domestic) Waste.

DATE: October 6, 2009

NEEDS: For City Council to consider adoption of a revised ordinance addressing sewer system operation and discharge of industrial (non-domestic) waste.

FACTS:

- 1. California Department of Water Resources' 1981 report, *Water Quality in the Paso Robles Area*, recommends more stringent control of total dissolved solids and sodium (salts) in the City's wastewater treatment plant (WWTP) discharge.
- 2. The State and Regional Water Board's 1994 Water Quality Control Plan, Central Coast Basin, states regarding Paso Robles, "Use of reclaimed water should be investigated and implemented, if feasible. A reduction of inorganic salt in the effluent would increase its desirability to potential users."
- 3. The Federal Code of Regulations (CFR) requires Publicly Owned Treatment Works (POTW) to develop and enforce limits of the character and volume of pollutants discharged into the wastewater treatment system.
- 4. Limits on industrial wastewater quality are necessary to protect the City's sewer system and WWTP, limit adverse water quality impacts, and provide for future recycled water use.
- 5. The City's National Pollutant Discharge Elimination System permit for the WWTP requires the City to implement a Source Control/Industrial Waste program and monitor discharges into the WWTP.
- 6. Per California Water Code Section 13385, the City is subject to mandatory minimum penalties of \$3,000 per effluent violation. The California Water Code provides for penalties of up to \$10,000 per day. The City currently pays penalties of approximately \$9,000 per month for violations of its salts and toxic pollutants effluent limits.
- 7. The City's 2007 Water Resources Plan Integration and Capital Improvement Program states:
 - "...a principal finding of the City's eight water resource reports is that potable water demand may more than double over the next 18 years. This demand will require development of new fresh water supplies along with efforts to conserve water and to provide recycled water for non-potable users. Accompanying this sharp increase in water demand would be an impressive investment in infrastructure to deliver more water, faster and to collect the waste stream for treatment back at the wastewater treatment plant. Handling the waste stream will get increasingly difficult and costly if current salt loading trends continue. The City currently deposits treated wastewater that contains over double the salt concentrations as that which is drawn for use from the very same source. Alternatively, the City could deliver improved water quality principally from Lake

Nacimiento while simultaneously alerting customers to the salt-concentrating effects of on-site regenerated water softeners along with pretreatment of commercial discharges. Successfully decreasing salt loading in the waste stream would advance the success of recycling treated wastewater, lessen the potential for long-term degradation of underground fresh water sources, bringing us full circle to using recycled water to offset a portion of the increasing demand for potable water supplies."

- 8. The State's 2009 Recycled Water Policy requires local agencies in every region of California to develop plans to control the source of nutrients and salts, to facilitate increased use of recycled water.
- 9. The City's requirement to limit its salt discharge is consistent with the neighboring communities of Atascadero, Templeton, and San Miguel.
- 10. The City is required to prepare and implement a Fats, Oils, and Grease program to reduce the amount of these substances discharged to the sanitary sewer system, to prevent sewage spills and comply with the Statewide General Waste Discharge Requirements for Wastewater Collection Agencies.
- 11. The ordinance being proposed is consistent with the Federal Pretreatment Streamlining Rule adopted October 14, 2005.

ANALYSIS & CONCLUSION:

The City's wastewater discharge permit includes stringent effluent limits for certain pollutants. The City is required to prepare and implement a Source Control Plan that will help achieve compliance with the effluent limits. Additionally, the City must control fats, oils, and grease discharges into the collection system and require installation of grease removal devices.

The proposed ordinance establishes the Source Control Plan. It requires industrial (non-domestic) wastewater to meet quality limits before discharge into the City's sewer system (the technical basis for these limits is discussed in the attached *Technical Basis for Local Wastewater Limits* report, dated June 2009). These limits will require most large industrial users to pre-treat wastewater before discharge.

Reducing discharge salinity is a long-term goal and depends on delivery of softer Nacimiento water. With Nacimiento water, some industrial users may meet salts limits without changing their water softening equipment. Some industrial users may have to reduce or discontinue use of self-regenerating water softeners. In order to allow for Nacimiento water to come online and provide industrial users with high salinity discharges (e.g., commercial laundry facilities, hotels) adequate time to plan improvements, City staff recently added language to the proposed ordinance (see section 14.10.010) which states the City will not begin inspecting and permitting industrial users with high salinity discharges until January 1, 2011. If the industrial user must make improvements to comply, the industrial user may request a compliance schedule by submitting a proposed schedule to the Public Works Director. The compliance schedule may not exceed three years.

Compliance monitoring and program administration will cost the City approximately \$270,000 annually. This is a cost of doing business for industrial wastewater dischargers. Kennedy/Jenks Consultants is currently evaluating the costs of the Industrial Waste

Program to determine appropriate industrial user fees. Fees will offset the costs of the administration and implementation of the Industrial Waste Program, rendering it fiscally neutral. Industrial user fees will be presented for City Council consideration at a later date.

POLICY

REFERENCE: Water Quality Control Plan, Central Coast Basin

National Pollutant Discharge Elimination System (NPDES) Permit No. CA0047593, Waste Discharge Requirements for the Paso Robles Wastewater Treatment Plant

February 2007 Water Resources Plan Integration and Capital Improvement Program

Statewide General Waste Discharge Requirements for Sanitary Sewer Systems, Order No. 2006-0003-DWQ

City of Paso Robles Sewer System Management Plan, May 1, 2009

2009 Recycled Water Policy

FISCAL IMPACT:

Adoption of the Ordinance and implementation of an Industrial Waste Program will cost the Wastewater Fund approximately \$270,000 annually. Permit fees will be established to offset the costs associated with the Industrial Waste Program.

OPTIONS:

- a. Adopt Resolution No. 09-xx to establish local discharge limits, and introduce for first reading Ordinance No. 09-xxx, which:
 - 1. Repeals Ordinance Nos. 88-563 and 97-722 14.08 in entirety
 - 2. Adopts Ordinance No. 09-xxx
- b. Amend, modify or reject the above option

Prepared by: Patti Gwathmey, Industrial Waste Manager

Matt Thompson, Wastewater Resources Manager

Attachments: Resolution No. 09-xx, Local Limits

Proposed Ordinance No. 09-xxx

Technical Basis for Local Wastewater Limits

September 15, 2009 letter from Regional Water Board

RESOLUTION NO. 09-xxx

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF PASO ROBLES ESTABLISHING LOCAL DISCHARGE LIMITS FOR WASTEWATER.

WHEREAS, the City's Wastewater Treatment Plant permit requires the City to implement a Source Control program; and

WHEREAS, the Federal Code of Regulations requires Publicly Owned Treatment Works to develop and enforce limits of the character and volume of pollutants being discharged into their wastewater treatment system; and

WHEREAS, the City conducted a technical study to re-evaluate the local limits and the results of the study are discussed in the *Technical Basis for Local Wastewater Limits* report dated June 2009 and attached to this report.

NOW, THEREFORE, BE IT RESOLVED AS FOLLOWS:

<u>SECTION 1.</u> Repeal the current local limits listed in the section 14.08.07 of the Municipal Code.

<u>SECTION 2.</u> The City Council of the City of El Paso de Robles does hereby adopt the following local limits, to be contained in section 14.10.060 of the Municipal Code:

Constituent	Concentration Limit
Ammonia	20.0 mg/L
Boron	5.00 mg/L
Cadmium	0.10 mg/L
Chromium	3.70 mg/L
Copper	0.30 mg/L
Cyanide	0.01 mg/L
Nickel	1.90 mg/L
Molybdenum	1.10 mg/L
Selenium	0.27 mg/L
Zinc	4.00 mg/L
Sulfate	200 mg/L
Total Dissolved Solids (TDS)	1000 mg/L
Sodium	200 mg/L
Chloride	150 mg/L
Biochemical Oxygen Demand	360 mg/L
(BOD)	
Total Suspended Solids (TSS)	360 mg/L
Oil and Grease	100 mg/L

PASSED AND ADOPTED by the City Count following vote:	cil of the City of Paso Robles on October 6, 2009, by the
AYES: NOES: ABSTAIN: ABSENT:	
ATTEST:	Duane Picanco, Mayor
Cathy M. David Deputy City Clerk	

ORDINANCE NO. 09-XXX

AN ORDINANCE OF THE CITY OF EL PASO DE ROBLES REPEALING CHAPTER 14.08 SEWERAGE SYSTEM OPERATIONS. AND ESTABLISHING A REVISED MUNICIPAL CODE, CHAPTER 14.08 AND NEW CHAPTER 14.10

WHEREAS, the City's Wastewater Treatment Plant discharge permit requires the City to implement a Source Control/Industrial Waste program; and

WHEREAS, the proposed industrial waste discharge ordinance would be consistent with the Federal Pretreatment Streamlining Rule adopted October 14, 2005; and

WHEREAS, the Federal Code of Regulations requires Publicly Owned Treatment Works to develop and enforce limits of the character and volume of pollutants being discharged into their wastewater treatment system; and

WHEREAS, on May 2, 2006, the State Water Resources Control Board adopted General Waste Discharge Requirements for Sanitary Sewer Systems, Order No. 2006-0003-DWQ; and

WHEREAS, the Statewide Order requires all sewering entities to develop and implement a Sewer System Management Plan and to develop a Fats, Oils, and Grease Program; and

NOW, THEREFORE, THE CITY COUNCIL OF THE CITY OF EL PASO DE ROBLES DOES HEREBY ORDAIN AS FOLLOWS:

SECTION 1. Repeal Chapter 14.08 in entirety; and

<u>SECTION 2</u>: Replace with the attached Chapter 14.08 and insert new Chapter 14.10, Discharge of Industrial (Non-Domestic) Waste.

<u>SECTION 4.</u> <u>Effective Date.</u> This Ordinance shall take effect thirty (30) days after adoption as provided by Government Code section 36937.

<u>SECTION 5.</u> <u>Publication.</u> This Ordinance shall be published once fifteen (15) days after its passage in a newspaper of general circulation, printed, published and circulated in the City in accordance with Government Code section 36933.

Introduced at a regular meeting of the City Council held on October 6, 2009, and p	assed an	d
adopted by the City Council of the City of El Paso de Robles on the	_ day c	ıf
2009 by the following roll call vote, to wit:		

AYES:		
NOES:		
ABSTAIN:		
ABSENT:		
	Duane Picanco, Mayor	
ATTEST:		
Cathy M. David,	-	
Deputy City Clerk		
• • •		

Attachments: Revised Municipal Code Chapter 14.08 and new Chapter 14.10

1	Chapter 14.08 SEWERAGE SYSTEM OPERATIONS
2	Article I General Provisions
3	14.08.010 Authority
4	14.08.020 Purpose
5	14.08.030 General Regulations
6	14.08.040 Definitions
7	Article II Sewer Connection
8	14.08.050 Sewer Connection Required
9	14.08.060 Connection Permit
10	14.08.070 Manholes
11	14.08.080 Contractor's Requirements
12	14.08.090 Standard Specifications and Details
13	14.08.100 Plans, Profiles, and Specifications Required
14	14.08.110 Record Drawings
15	14.08.120 Master Plan
16	14.08.130 Authorization for Construction of Sewers
17	14.08.140 Backflow Device Required
18	14.08.150 Reimbursement for Master Planned Sewers
19	14.08.160 Capacity Fees
20	14.08.170 Reimbursement Agreements for Sewer Extensions
21	14.08.180 Sewers Outside City Limits
22	14.08.190 Annexation Requirements
23	14.08.200 Authority to Disconnect
24	14.08.210 Adjustments and Exceptions
25	Article III Private Wastewater Disposal System
26	14.08.220 General Provisions
27	14.08.230 Permit for Private Wastewater Disposal System
28	14.08.240 Conditions of Permit
29	14.08.250 Failure of Private Wastewater Disposal System
30	Article IV Violations and Penalties
31	14.08.260 Violations
32	14.08.270 Penalties

33	Article I General Provisions
34	14.08.010 Authority—Code Adopted.
35	A. Sections 50022.1 to 50022.8 of the California Government Code define procedures for the City
36	to adopt state and federal codes by reference.
37	B. This Chapter and Chapter 14.10 shall supplant all prior Code provisions, amendments thereto,
38	and policy statements relating to the rules and regulations for the operation of the City of El Paso
39	de Robles sewer system and matters incidental thereto.
40	14.08.020 Purpose
41	The wastewater discharge regulations in this Chapter and in Chapter 14.10 set uniform
42	requirements for discharges of domestic and industrial waste in the City sewer system to
43	enable the City to comply with the administrative provisions of the clean water regulations,
44	water quality requirements set by the Water Quality Control Board and the applicable
45	effluent limitations, national standards of performance, pretreatment effluent standards,
46	and any other discharge criteria that are required or authorized by state and federal law,
47	and to derive the maximum public benefit by regulating the quality and quantity of
48	wastewater discharged into those systems.
49	A. Establishing Rules and Regulations. Except as provided otherwise, the Director of
50	Public Works shall administer, implement, and enforce the provisions of this Chapter. The
51	Director is hereby authorized to establish any rules and regulations necessary for the
52	enforcement of this Chapter, and may delegate and appoint employees of the City to act
53	on his or her behalf.
54	B. Constitutionality. If any provision of this Chapter or the application thereof to any person or
55	circumstance is held invalid, the remainder of the Chapter or application of such provision to other
56	persons or circumstances shall not be affected.
57	C. Conflict with State Law. Any provision in this Chapter that conflicts with the provisions of the
58	California Health and Safety Code, Streets and Highways Code, Government Code, or any other
59	California Code shall be automatically superseded by the provisions in said Code until such time
60	as this Chapter can be revised.
61	14.08.030 General Regulations.
62	A. It is unlawful for any person to place, deposit or permit to be deposited in an unsanitary
63	manner upon public or private property within the City, or in any area under the jurisdiction of the
64	City, any domestic or industrial sewage.
65	B. It is unlawful to discharge to any waters of the state any sewage, industrial wastes or other
66	polluted waters, except where suitable treatment has been provided in accordance with
67	provisions of this Chapter.

- 68 C. It is unlawful for any person to dump or discharge into the City sewer system any raw or
- 69 chemically treated wastewater from septic tanks or chemically treated wastewater from portable
- 70 toilets, or any raw or chemically treated sewage from any industrial or unidentified liquid waste or
- any hazardous waste except as provided by Chapter 14.10.
- 72 D. Except as provided in Article III of this Chapter, it is unlawful to construct or maintain any privy,
- privy vault, septic tank, cesspool, seepage pit or other facility intended or used for the disposal of
- sewage except for permitted and approved septic tank, leach-field and seepage pit systems.
- 75 E. No building, industrial facility or other structure shall be occupied until the owner of the
- 76 premises has complied with all rules and regulations of the City. Any industrial or commercial
- facility is prohibited from discharging pollutants which may: (1) pass through an individual
- disposal system, and is untreated or partially treated; (2) interfere with any individual disposal
- 79 system treatment works; and/or (3) contaminate any individual disposal system's sludge.
- 80 F. All privately owned building laterals and private sewage disposal systems and appurtenances
- 81 from all points of the property to the City sewer, shall be maintained by the property owner in a
- 82 safe and proper operating condition; and all devices or safeguards which are required by this
- Chapter for the operation thereof shall be maintained in good working order.
 - 1. To determine compliance with this Chapter the City may require any plumbing system, new or existing, to be reinspected.
 - 2. The Director may require a property owner to submit to the City a video of the private lateral and appurtenances. If the City determines that the private lateral or any portion thereof, has become unsanitary or a threat to health or property, the City shall order in writing that plumbing be removed or placed in a safe and sanitary condition. Any such order shall fix a reasonable time limit for compliance. No person shall use or maintain defective plumbing after receiving such notice.
- 92 G. All Users of the sewer system shall prevent the discharge of prohibited substances as
- 93 described in Sections 14.10.040 14.10.060 of Chapter 14.10 into the laterals or other sewer
- 94 lines connected with the City sewer and sewer treatment system and all Users shall take such
- 95 reasonable and necessary measures as may from time to time be prescribed by the City Council
- 96 to make effective enforcement of this prohibition. More stringent requirements imposed by the
- 97 Water Quality Control Board shall be controlling.
- 98 H. Excessive Sewer Maintenance/Damage to Facilities. Any person(s) who discharge or
- causes to be discharged into the City's sewerage facilities either directly or indirectly, any
- 100 waste or wastewater which is prohibited, creates a blockage, breakage, permanent
- 101 reductions to sewer capacity, causes excessive maintenance expenses, creates
- detrimental effects to the POTW, causes the violation of a discharge requirement or
- regulation imposed by a regulatory agency, or causes any other damage to City facilities,
- shall be liable for all damages and costs occasioned thereby, including any penalty

85

86

87

88

89

90

- 105 assessed by a regulatory agency. The damages, cost, or penalty assessed shall be 106 deemed a debt to the City and shall be charged to the User. 107 14.08.040 Definitions 108 Acreage means a parcel of land that is the gross acres of said parcel before existing 109 improved streets have been deducted. 110 Act means the Federal Water Pollution Control Act Amendments of 1972 (PL 92-500) (33 111 U.S.C. § 1251, et seg.) and any amendments thereto including the Clean Water Act of 112 1977, as well as any regulations, guidelines, limitations and standards promulgated by the 113 United States Environmental Protection Agency pursuant to the Act. 114 Applicant means the person applying for a permit for a sewer or plumbing installation and 115 shall be the owner or authorized agent of the premises to be served by the sewer for 116 which a permit is requested. 117 Approval Authority means the State Water Resources Control Board. 118 Authorized or Duly Authorized Representative of the User means: 119 1. If the User is a corporation: 120 a. The president, secretary, treasurer, or a vice-president of the corporation in charge 121 of a principal business function, or any other person who performs similar policy or 122 decision-making functions for the corporation; or 123 b. The manager of one or more manufacturing, production, or operation facilities, 124 provided the manager is authorized to make management decisions that govern the 125 operation of the regulated facility including the explicit or implicit duty to make major 126 capital investment recommendations, and initiate and direct other comprehensive 127 measures to assure long-term environmental compliance with environmental laws and 128 regulations; has the ability to ensure that the necessary systems are established or
- 2. If the User is a partnership or sole proprietorship: a general partner or proprietor,respectively.

delegated to the manager in accordance with corporate procedures.

129

130

131

3. If the User is a federal, state or local governmental facility: a Director or highest official appointed or designated to oversee the operation and performance of the activities of the governmental facility, or their designee.

actions taken to gather complete and accurate information for wastewater discharge

permit requirements, and where authority to sign documents has been assigned or

governmental facility, or their designee.

4. The individuals described in paragraphs 1 through 3 of this subsection may designate a

Duly Authorized Representative if the authorization is in writing, the authorization specifies

the individual or position responsible for either the overall operation of the facility from

which the discharge originates or the overall environmental matters of the company, and

the written authorization is submitted to the City.

142	Beneficial Uses means uses of the waters of the state that may be protected against
143	quality degradation including, but not limited to, domestic, municipal, agricultural and
144	industrial supply, power generation, recreation, athletic enjoyment, navigation and the
145	preservation and enhancement of fish, wildlife and other aquatic resources or reserves
146	and other uses, both tangible or intangible, as specified by federal or state law.
147	Best Management Practices (BMPs) means the schedules of activities, prohibitions of
148	practices, maintenance procedures, and other management practices to implement the
149	prohibitions listed in Sections 14.10.040(A) and (C). BMPs include treatment
150	requirements, operating procedures, and practices to control plant site runoff, spillage, or
151	leaks, sludge or waste disposal, or drainage from raw materials storage.
152	Biochemical Oxygen Demand (BOD) means the quantity of oxygen utilized in the
153	biochemical oxidation of organic matter under standard laboratory procedure in five (5)
154	days at twenty (20) degrees centigrade, expressed in terms of weight and concentration
155	(milligrams per liter).
156	Building means any structure used for human habitation or a place of business,
157	recreation or other purpose containing sanitary facilities.
158	Building Sewer means that portion of any sewer beginning at the building drain, 2' from
159	the building, of any building or facility and running to the City sewer main, or to a private
160	sewage disposal system, or to a public right-of-way or easement.
161	Capacity Charge means the amount charged for connection to the City Sewer System for the
162	purposes of mitigation of impacts of new development. A reasonable relationship must be
163	demonstrated between the use of the fee and the type of development on which the fee is
164	imposed.
165	Categorical Industrial User means an Industrial User subject to a Categorical Pretreatment
166	Standard or categorical standard.
167	Categorical Pretreatment Standard or Categorical Standard means any regulation containing
168	pollutant discharge limits promulgated by the Environmental Protection Agency in accordance
169	with Sections 307(b) and (c) of the Act (33 U.S.C. § 1317) that apply to a specific category of
170	Industrial Users, including those standards promulgated in 40 CFR Chapter I, Subchapter N, as
171	amended from time to time.
172	Cesspool means an unlined excavation in the ground that receives the discharge of a drainage
173	system or part thereof, so designed as to retain the organic matter and solids discharging therein,
174	but permitting the liquids to seep through the bottom and sides.
175	City means the City of El Paso de Robles in the County of San Luis Obispo, State of California.
176	City Attorney means an attorney appointed by the City Council to represent the City.
177	City Council means the five (5) City Council members elected at large from within the City

boundaries and empowered as a group acting in public meetings to legislate in all matters related

- to the City's jurisdiction established by the laws of the State of California.
- 180 City Engineer means the engineer appointed by, and acting for, the City Council. The City
- 181 Engineer shall be a registered civil engineer.
- 182 **City Inspector** means the inspector acting for the City Council and may be the engineer or
- inspector appointed by the Director of Public Works.
- 184 Code of Federal Regulations (CFR) means a document of the United States government
- presenting federal agency rules, regulations and guidelines.
- 186 Commercial Establishment means any building used for conducting private or public wholesale
- or retail transactions involving the exchange of services, commodities or financial business. Such
- facilities normally produce domestic wastes, but may also contain some industrial wastes.
- 189 Connector means any owner or renter of any premises connected to the sewer system.
- 190 Contractor means an individual firm, corporation, partnership, or association duly licensed
- by the State of California to perform the type of work to be done under the permit.
- 192 Control Authority means The City of El Paso de Robles.
- 193 Conventional Pollutants means pollutants which are usually found in domestic and/or
- 194 commercial wastes such as suspended solids, biological oxygen demand, and oil and
- grease of animal or vegetable origin.
- 196 Cooling Water means the blow-down or bleed water from cooling towers, water
- discharged from any use such as air conditioning, cooling or refrigeration, during which the
- only pollutant added to the water is heat.
- 199 **County** means the County of San Luis Obispo in the State of California.
- 200 Director means the Public Works Director of the City of El Paso de Robles or his or her
- authorized representative.
- 202 **Discharge** means to pump, to place, to deposit, to permit or to cause to flow.
- 203 **Domestic Wastes** means liquid waste and solid waterborne wastes derived from the
- ordinary living processes of humans of such character as to permit satisfactory disposal,
- without special treatment, into the public sewer or by means of a private disposal system.
- 206 **Dwelling Unit** means a single unit providing complete, independent living facilities for one or
- more persons, which may include permanent provisions for living, sleeping, eating, cooking and
- 208 sanitation.
- 209 **EPA or Environmental Protection Agency** means the United States Environmental Protection
- 210 Agency.
- 211 **Existing Source** means any source of discharge, the construction or operation of which
- commenced prior to the publication by the EPA of proposed Categorical Pretreatment Standards,
- which will be applicable to such source if the standard is thereafter promulgated in accordance
- with Section 307 of the Act.

- 215 Garbage means solid wastes from the domestic and commercial preparation, cooking and
- dispensing of food and from the handling, storage, and sale of produce.
- 217 **Grab Sample** means a sample which is taken from a waste stream without regard to the flow in
- the waste stream and over a period of time not to exceed fifteen (15) minutes.
- 219 Hazardous Waste means a waste defined in Section 66261.3 of Title 22, of the California Code
- of Regulations. "Hazardous waste" includes extremely hazardous waste, acutely hazardous
- waste, RCRA hazardous waste, non-RCRA hazardous waste, and special waste.
- Health Department means a State or County health department.
- 223 **Indirect Discharge** means the introduction of pollutants into the POTW from any non-domestic
- source regulated under Section 307(b), (c), or (d) of the Act.
- 225 Industrial User (IU) means any non-domestic source of indirect discharge including Significant
- 226 Industrial Users.
- 227 Industrial Wastewater means any non-domestic liquid or solid wastes from any commercial,
- 228 industrial or institutional establishment. Industrial waste is distinct from domestic waste.
- 229 Infectious Waste means waste which contains pathogenic organisms that can invade the tissues
- of the body and cause disease.
- 231 Instantaneous Limit means the maximum concentration of a pollutant allowed to be discharged
- at any time, determined from the analysis of any discrete or composited sample collected,
- independent of the industrial flow rate and the duration of the sampling event.
- 234 **Interference** means any discharge that, alone or in conjunction with a discharge or discharges
- from other sources, inhibits, disrupts, or damages the POTW, its treatment processes or
- operations, or its sludge processes, use or disposal; and therefore, is a cause of a violation of the
- 237 City's NPDES permit (including an increase in the magnitude or duration of a violation) or of the
- prevention of sewage sludge use or disposal in compliance with any of the following
- statutory/regulatory provisions or permits issued thereunder, or any more stringent state or local
- 240 regulations: Section 405 of the Clean Water Act; the Solid Waste Disposal Act (SWDA) including
- 241 Title II, more commonly referred to as the Resource Conservation and Recovery Act (RCRA); any
- state regulations contained in any state sludge management plan prepared pursuant to Subtitle D
- of the SWDA; the Clean Air Act; the Toxic Substances Control Act; and the Marine Protection,
- 244 Research and Sanctuaries Act.
- Lateral means a privately owned, operated, and maintained sewer line connecting a building or
- private facility to the City's main sewer. The lateral includes that portion of the line located within
- the public right-of-way.
- 248 Leach Field means a conventional septic effluent treatment and absorption system which
- consists of a network of perforated pipes buried in gravel-filled trenches.

- 250 Local Limit means the specific discharge limits developed and enforced by the City upon 251 industrial or commercial facilities to implement the general and specific discharge prohibitions 252 listed in 40 CFR 403.5(a)(1) and (b). 253 Main Sewer means a public sewer designated to accommodate more than one lateral sewer, in 254 which all owners of abutting properties have equal rights and is controlled by public authority. 255 Medical Waste means isolation wastes, infectious agents, human blood and blood products, 256 pathological wastes, sharps, body parts, contaminated bedding, surgical wastes, potentially 257 contaminated laboratory wastes, and dialysis wastes. 258 Monthly Average means the sum of all "daily discharges" measured during a calendar month 259 divided by the number of "daily discharges" measured during that month. 260 Monthly Average Limit means the highest allowable average of "daily discharges" over a 261 calendar month, calculated as the sum of all "daily discharges" measured during a calendar 262 month divided by the number of "daily discharges" measured during that month. 263 NPDES Permit or National Pollutant Discharge Elimination System Permit means the 264 regulatory agency document issued by either a federal or state agency which is designed to 265 control all discharges of pollutants from point sources. 266 Natural Outlet means any outlet into a watercourse, pond, ditch, lake or other body of surface or 267 groundwater. 268 **New Source** means: 269 (1) Any building, structure, facility, or installation from which there is (or may be) a discharge of 270
 - (1) Any building, structure, facility, or installation from which there is (or may be) a discharge of pollutants, the construction of which commenced after the publication of proposed Pretreatment Standards under Section 307(c) of the Act that will be applicable to such source if such Standards are thereafter promulgated in accordance with that section, provided that:

272

273

274

275

276

277

278

279

280

281

282

283

284

285

- (a) The building, structure, facility, or installation is constructed at a site at which no other source is located; or
- (b) The building, structure, facility, or installation totally replaces the process or production equipment that causes the discharge of pollutants at an Existing Source; or
- (c) The production or wastewater generating processes of the building, structure, facility, or installation are substantially independent of an Existing Source at the same site. In determining whether these are substantially independent, factors such as the extent to which the new facility is integrated with the existing plant, and the extent to which the new facility is engaged in the same general type of activity as the Existing Source, should be considered.
- (2) Construction on a site at which an Existing Source is located results in a modification rather than a New Source if the construction does not create a new building, structure, facility, or installation meeting the criteria of subsections (1)(b) or (c) of this section, but otherwise alters, replaces, or adds to existing process or production equipment.

287 (3) Construction of a New Source as defined under this paragraph has commenced if the owner 288 or operator has: 289 (a) Begun, or caused to begin, as part of a continuous onsite construction program 290 i. Any placement, assembly, or installation of facilities or equipment; or 291 ii. Significant site preparation work including clearing, excavation, or removal of existing 292 buildings, structures, or facilities necessary for the placement, assembly, or installation of 293 new source facilities or equipment; or 294 (b) Entered into a binding contractual obligation for the purchase of facilities or 295 equipment which are intended to be used in its operation within a reasonable time. 296 Options to purchase or contracts which can be terminated or modified without substantial 297 loss, and contracts for feasibility, engineering, and design studies do not constitute a 298 contractual obligation under this paragraph. 299 Noncontact Cooling Water means water used for cooling which does not come into direct 300 contact with any raw material, intermediate product, waste product, or finished product. 301 Non-Significant Categorical Industrial User. See definition of Significant Industrial User under 302 this section. 303 Pass Through means any discharge which exits the POTW into waters of the United States in 304 quantities or concentrations which, alone or in conjunction with a discharge or discharges from 305 other sources, is a cause of a violation of any requirement of the POTW's NPDES permit, 306 including an increase in the magnitude or duration of a violation. 307 Permit means any written authorization required pursuant to this Chapter or Chapter 14.10 or 308 any other rule, regulation or ordinance of the City for the installation of any sewage facilities. 309 Person means any individual, partnership, co-partnership, firm, company, corporation, 310 association, joint stock company, trust, estate, governmental entity, or any other legal entity; or 311 their legal representatives, agents, or assigns. This definition includes all federal, state, and local 312 governmental entities. 313 pH means the scale of 1 to 14 which measures acidity and alkalinity; 7.0 being neutral, 0 - 6.9 314 being acidic, and 7.1 – 14 being basic or alkaline. Technically, it is the logarithm (base 10) of the 315 reciprocal of the concentration of hydrogen ions expressed in pH units. 316 Plumbing System means all plumbing fixtures and traps, or soil, waste, special waste and vent 317 pipes, and all sanitary sewer pipes within a building and extending to the building sewer 318 connection three (3) feet outside the building wall. 319 Pollutant means dredged spoil, solid waste, incinerator residue, filter backwash, sewage, 320 garbage, sewage sludge, munitions, medical wastes, chemical wastes, biological materials, 321 radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt, municipal, 322 agricultural and industrial wastes, and certain characteristics of wastewater (e.g., pH, 323 temperature, TSS, turbidity, color, BOD, COD, toxicity, or odor).

324	Pretreatment means the reduction of the amount of pollutants, the elimination of pollutants or the
325	alteration of the nature of pollutant properties in wastewater to a less harmful state prior to or in
326	lieu of discharging or otherwise introducing such pollutants into the City's sewerage system. The
327	reduction or alteration can be obtained by physical, chemical or biological processes, or by
328	process changes, except by diluting the concentration of the pollutants unless allowed by an
329	applicable Pretreatment Standard.
330	Pretreatment Requirements means any substantive or procedural requirement related to
331	pretreatment, other than a Pretreatment Standard, imposed on a User.
332	Pretreatment Standard or Standards means any prohibited discharge standards, Categorical
333	Pretreatment Standards, and local limits.
334	Private Sewer means a sewer serving a private developed property and which accommodates
335	one or more buildings and is connected with a public sewer main.
336	Private Wastewater Disposal System means a water-tight receptacle that receives the
337	discharge of wastewater, designed and constructed so as to retain solids, digest organic matter
338	through a period of detention and allow the liquids to discharge into the soil outside of the tank
339	into a leach field.
340	Prohibited Discharge Standards or Prohibited Discharges means absolute prohibitions
341	against the discharge of certain substances. These prohibitions appear in Sections 14.10.040 –
342	14.10.060 of Chapter 14.10.
343	POTW or Publicly Owned Treatment Works is defined by the Act and includes any devices and
344	systems owned by the City and used in the storage, treatment, recycling and reclamation of
345	municipal sewage or industrial wastes of a liquid nature. It also includes sewers, pipes and other
346	conveyances that convey wastewater to a treatment plant. The term also means the municipality
347	as defined in Section 502(4) of the Act, which has jurisdiction over the indirect discharges to, and
348	the discharges from, such a treatment works.
349	Septage means sludge produced in individual on-site wastewater disposal systems such as
350	septic tanks and cesspools.
351	Septic Tank Waste means any sewage from holding tanks such as vessels, chemical toilets,
352	campers, trailers, and septic tanks.
353	Sewage means wastewater.
354	Sewage System or Sewerage System means all City facilities for the collection, pumping,
355	treatment and disposal of sewage.
356	Sewer means a pipe or conduit that transports wastewater, into which storm, surface, and ground
357	waters are not intentionally admitted.
358	Shall means mandatory.

- 359 **Significant Industrial User (SIU)** means any User of the City's sewerage system that is:
- 1. A User subject to Categorical Pretreatment Standards; or
- 361 2. A User that:

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

388

389

390

391

392

393

394

- Discharges an average of twenty-five thousand (25,000) gallons or more per day of process wastewater to the POTW (excluding sanitary, noncontact cooling, and boiler blow down wastewater), or
 - b. Contributes a process waste stream which makes up five (5) percent or more of the average daily dry weather hydraulic or organic capacity of the POTW treatment plant, or
 - c. Is classified as a categorical industry as regulated under Federal Categorical Pretreatment Standards, or
 - d. Is designated as such by the City on the basis that it has a reasonable potential for adversely affecting the POTW's operation or for violating any pretreatment standard or requirement.
 - 3. The City may determine that a User subject to Categorical Pretreatment Standards is a Non-Significant Categorical Industrial User rather than a SIU on a finding that the User never discharges more than 100 gallons per day (gpd) of total categorical wastewater (excluding sanitary, non-contact cooling and boiler blow down wastewater, unless specifically included in the Pretreatment Standard) and the following conditions are met:
 - a. The User, prior to City's finding, has consistently complied with all applicable Categorical Pretreatment Standards and Requirements;
 - b. The User annually submits the certification statement required in Section 14.10.430(B) [see 40 CFR 403.12(q)], together with any additional information necessary to support the certification statement; and
 - c. The User never discharges any untreated concentrated wastewater.
- 4. Upon a finding that a User meeting the criteria in subsection 2 of this section has no reasonable potential for adversely affecting the POTW's operation or for violating any pretreatment standard or requirement, the City may at any time, on its own initiative or in response to a petition received from a User, and in accordance with procedures in 40 CFR 403.8(f)(6), determine that such User should not be considered a Significant Industrial User.
 - **Slug Load or Slug** means any discharge at a flow rate or concentration that could cause a violation of the prohibited discharge standards in Sections 14.10.040 14.10.060 of Chapter 14.10. A slug discharge is any discharge of nonroutine, episodic nature, including but not limited to an accidental spill or a non-customary batch discharge, which has a reasonable potential to cause interference or pass through, or in any other way violate the POTWs's regulations, local limits or permit conditions.
 - **Standard Industrial Classification (SIC)** means the compilation of industrial groups and their economic activities which is printed by the U.S. Office of Management and Budget in its Standard

396	Industrial Classification Manual.
397	Storm Water means any flow occurring during or immediately following any form of natural
398	precipitation.
399	Street means any public highway, road, street, avenue, alley way, place, easement or right-of-
400	way.
401	Suspended Solids or Total Suspended Solids means the total suspended matter that floats on
402	the surface of, or is suspended in, water, wastewater or other liquids and which is removable by
403	laboratory filtering.
404	User means any person, domestic or non-domestic, who discharges, or causes a discharge of
405	wastewater directly or indirectly into the City's sewer system.
406	Waste includes sewage and any and all other water substances, liquid, solid, gaseous or
407	radioactive substances associated with human habitation, or of human or animal origin, or from
408	any production, manufacturing, or processing operation of whatever nature, including such waste
409	placed within containers of whatever nature prior to, and for the purpose of, disposal.
410	Wastewater means the liquid and water-carried wastes and sewage from residential dwellings,
411	commercial buildings, industrial and manufacturing facilities, and institutions, whether treated or
412	untreated, which are discharged into, or permitted to enter, the City's sewer system.
413	Wastewater Constituents and Characteristics means the individual chemical, physical,
414	bacteriological and radiological parameters including volume and flow rate and such other
415	parameters that serve to define, classify or measure the contents, quality, quantity and strength or
416	wastewater.
417	Wastewater Treatment Plant or Treatment Plant means that portion of the POTW that is
418	designated to provide treatment of municipal sewage and industrial waste.
419	Water Quality Control Board means a state or regional office of the California Water Quality
420	Control Board.
421	Watercourse means a channel in which a flow of water occurs either continuously or
422	intermittently.
423	Waters of the State means all streams, lakes, ponds, marshes, watercourses, waterways,
424	wells, springs, reservoirs, aquifers, irrigation systems, drainage systems and all other
425	bodies or accumulations of water, surface or underground, natural or artificial, public or
426	private, which are contained within, flow through, or border upon the state or any portion
427	thereof.
428	Article II. Sewer Connection
429	14.08.050 Sewer Connection Required
430	A. Occupancy Prohibited. No building, industrial facility or other structure shall be occupied
431	until the owner of the premises has complied with all City rules and regulations.

- B. Sewer Required. All new buildings shall connect to the City sewerage system and all
- 433 land development projects shall include provisions for the connection of future buildings to
- 434 the City sewerage system.
- 1. Exceptions will be allowed only when the City Council approves a private wastewater
- disposal system permit in accordance with Article III of this Chapter.
- 437 2. Individual sewer lateral. An individual lateral sewer shall be provided for each building,
- except when a building is located in the rear of another building on an interior lot,
- permission may be granted by the City to construct a private sewer, provided the buildings
- are under the same ownership or controlled by sufficient agreement to assure compliance
- by each building with the provisions of this Chapter.
- 442 C. Clean-Outs, All plumbing systems or building sewers shall be maintained with clean-
- outs installed pursuant to the applicable provisions of this Code. Each premise shall install
- and leave in place a Test-Y clean-out at the public easement abutting the premises. All
- description of the City and shall be maintained to be
- water tight.

14.08.060 Connection Permit

- 448 A. No person shall uncover, make any connections with or opening into, use, alter or disturb any
- public sewer or appurtenance, or perform any work on any plumbing or drainage system within
- 450 the City's public right-of-way, without first obtaining an encroachment permit from the City
- 451 Engineer.
- 452 B. No person shall construct a sewer lateral or make a connection with any public sewer without
- 453 first obtaining a plumbing permit from the City Building Division and paying all required capacity
- and reimbursement fees.

455 **14.08.070 Manholes**

- 456 Any licensed contractor who undertakes to pave, resurface, regrade or do any work on
- any street that contains City sewers shall not cover up or conceal any manholes or
- 458 structure, or their covers; every care must be taken to protect them. In the event said work
- results in damage to, or a change of grade in, the area of the manhole or structure, the
- contractor performing the work shall be responsible, at his own expense, for repairing or
- 461 modifying the manhole or structure to meet the new grade. Before any work is performed
- 462 to City manholes or structures, the City's Public Works Department shall be contacted and
- 463 all work shall be done under an encroachment permit at the direction of the City Engineer,
- and in accordance with City standards.

466	14.08.080 Contractor's Requirements.
467	It shall be unlawful for any person who is not a licensed contractor under the State
468	Contractor's License Law to install or construct any sewer for connection to the City's
469	sewer system, or to otherwise make a connection to said system. All contractors must
470	obtain an encroachment permit from the City Engineer prior to commencing or carrying out
471	any such work within the City.
472	14.08.090 Standard Specifications and Details.
473	The City has adopted Standard Specifications and Details for the construction of sewers
474	and appurtenances, which is available in the office of the City Engineer and on the City's
475	web site at www.PRCity.com. Said Standard Specifications and Details are incorporated
476	herein by reference.
477	14.08.100 Plans, Profiles and Specifications Required.
478	The application for an encroachment permit for public sewer construction shall be
479	accompanied by complete plans, profiles and specifications showing all details of the
480	proposed work, and which shall be approved by the City Engineer, and which shall comply
481	with all applicable City rules and regulations. Plans shall be prepared by a registered civil
482	engineer licensed in the State of California.
483	14.08.110 Record drawings
484	Drawings showing the actual location of all mains, structures, laterals and clean-outs shall
485	be filed with the City Engineer prior to acceptance of the work.
486	14.08.120 Master Plan.
487	An adopted official master plan for trunk systems within the City shall be on file in the
488	office of the Director of Public Works, and shall be incorporated herein by reference.
489	14.08.130 Authorization for Construction of Sewers.
490	Authorization to construct new sewer mains in the public right-of-way must be obtained
491	from the City Engineer acting under the authority of the Director. Request for authorization
492	shall be made to the City Engineer. All construction shall be in accordance with the City's
493	Standard Specifications and Details.
494	14.08.140 Backflow Device Required.
495	A. To assist in the protection of health and property, a backflow valve or overflow device
496	shall be installed in the sewer serving any building where the lowest floor elevation
497	(containing plumbing fixtures) will be less than one foot above the rim of the upstream
498	manhole or flushing inlet.

499	B. When an overflow device is installed, the elevation of discharge of said installation shall
500	be at least one foot below the lowest floor elevation containing a plumbing fixture
501	system, building sewer or lateral sewer and may include a back-up check valve wherever
502	and whenever the City may deem advisable.
503	14.08.150 Reimbursement for Master Planned Sewers
503 504	
	The City may require, as a condition of development, that a developer install oversized
505 506	sewer improvements to serve adjacent properties consistent with the City's Sewer Master
506 507	Plan. In such event, the City may provide that such developer be reimbursed for a portion
507	of the cost of such oversized improvements.
508	14.08.160 Capacity Charges
509	A capacity charge shall be charged for each connection to the City sewer at a rate
510	established by City resolution.
511	14.08.170 Reimbursement Agreements for Sewer Extensions
512	A. A reimbursement agreement may be prepared by the City Engineer for consideration by
513	the City Council where a property owner has installed sewer lines and appurtenances
514	beyond his or her property line and the sewer line is subject to probable future use by
515	other properties.
516	B. Funds for reimbursement of sewer extensions are obtained from future connections to
517	said sewer. Reimbursements occur semi-annually. Distribution to the property owner shall
518	be limited to an amount equal to total excess costs approved by the City Council.
519	Agreements shall terminate ten (10) years from date of acceptance by the City Council,
520	unless extended by the City Council.
521	14.08.180 Sewers Outside City Limits
522	It shall be the City's policy to deny sewer permits for any property outside the City, except
523	where exceptional circumstances warrant such permit and where the City, in its sole
524	discretion, determines it will benefit from providing such sewer service outside the City
525	limits. If such permit is approved by the City Council, the applicant must enter into a
526	written contract with the City whereby the applicant shall bind himself, his heirs, his
527	successors and assigns to abide by all City ordinances, rules and regulations in regard to
528	the manner in which such sewer shall be used, the manner of connecting such sewer, the
529	plumbing and drainage in connection therewith, and to pay all specified fees and charges.
530	The granting of a permit for sewer service outside the City limits, and the scope of such
531	permit, shall be within the sole discretion of the City Council.

532	14.08.190 Annexation Requirements
533	A. Conditions. As a condition of annexation to the City, the owners of property petitioning
534	for annexation shall, as a condition precedent thereto, pay to the City the following:
535	1. Processing Costs. The actual cost of preparation of maps, legal descriptions,
536	publication charges, and any and all other applicable charges pertaining to the
537	sewerage system.
538	2. Fees. Amounts fixed by the City as contribution of such areas annexed or serviced
539	toward the costs of the City's then existing sewerage system.
540	B. Payment of Processing Costs and Fees. The fees shall be paid prior to the issuance of
541	a permit as required by this Chapter.
542	C. Additional Terms and Conditions. The City Council reserves the right to or to provide for
543	additional terms and conditions.
544	
544	14.08.200 Authority to Disconnect.
545	In the event of a failure to pay sewer service charges, the City shall have authority to
546	disconnect the water service. When service has been disconnected as provided, the cost
547	or estimated cost of disconnection and reconnection to the system shall be deposited by
548	the User within the City before such User is reconnected to the system. The City shall
549	refund any part of the deposit remaining after payment of all costs of disconnection and
550	reconnection.
551	During the period of such disconnection, habitation of such premises by human beings
552	shall constitute a public nuisance, whereupon the City shall cause proceedings to be
553	brought for the abatement of the occupancy of said premises by human beings during the
554	period of such disconnection. In such event, and as a condition of reconnection, there is to
555	be paid to the City reasonable attorney's fee and cost of suit arising in said action.
556	The City declares that the foregoing procedures are established as a means of
557	enforcement of the terms and conditions of its Code, rules and regulations, and not as a
558	penalty.
550	14.00.040 A.V.
559	14.08.210 Adjustments and Exceptions.
560	The City Council retains the right to grant adjustments and exceptions to the provisions of
561	this Chapter in order to vary and modify the strict application thereof in cases in which
562	there are practical difficulties or unnecessary hardships. Application for any adjustment or
563	exception shall be made to the City Council in the form of a written application submitted
564	to the City Manager. However, no such adjustment or exception shall be allowed to

Agenda Item #04 Page 23 of 101

contravene state or federal standards or the City's technically-based local limit standards.

565

567	Article III. Private Wastewater Disposal Systems
568	14.08.220 General Provisions.
569	It shall be the goal of the City to make available the City's sewage system to all premises
570	within the boundaries of the City. Permission to construct a private wastewater disposal
571	system may be granted only when the provisions of this Code have been met.
572	14.08.230 Permit for Private Wastewater Disposal System
573	When it has been determined by the City Council that sewers are not reasonably available
574	to serve a given property (generally more than two hundred (200) feet from the property)
575	within the City, the owner of said property, meeting provisions of this Chapter, may reques
576	of the City Council a permit for the construction of a private wastewater disposal system.
577	The granting of such permit shall not overrule any negative action as may be formally
578	issued against such installation by either the California Water Quality Control Board or the
579	San Luis Obispo County Health Department.
580	14.08.240 Conditions of Permit.
581	A. The property owner shall enter into an agreement with the City in a form acceptable to
582	the City Attorney. The agreement shall be recorded in the County Recorder's Office and
583	shall include the following provisions:
584	1. Consent to future formation of an assessment district if said district is established by
585	the City Council for the purpose of constructing sewers to serve said property.
586	2. Connect said property to the City sewer system, obtain appropriate permits and pay
587	connection fees and special fees as applicable, when available and when directed to do so
588	by the Director of Public Works. Such connection shall be completed within six (6) months
589	of the date of receipt of said notification.
590	3. Construct septic tank and appurtenances in accordance with requirements of the
591	California Water Quality Control Board, Central Coast Basin Plan, County Health
592	Department, California Plumbing Code as modified within Title 17 of this Code, and City's
593	Standard Details and Specifications.
594	4. Operate and maintain the private wastewater disposal system and facilities in a safe
595	and sanitary manner at all times, at no expense to the City.
596	5. Grant to the City authority to enter premises for periodic inspection to ensure proper
597	operation and maintenance. Said authority shall be conveyed in writing by the owner of the
598	property and shall be binding upon all future owners, heirs, lessees, or occupants.
599	6. Grant to the City authority to enter premises in the event of an emergency involving the
600	system or a nuisance created by the system, which, in the sole opinion of the City, County
601	Health Department or California Water Quality Control Board creates a hazard that

602	threatens the health and safety of the citizens. The owner shall follow the instructions of
603	the City and any service rendered pursuant to such instructions shall be paid for by the
604	owner. When a health hazard or nuisance is determined to exist or water quality is
605	threatened, the City may revoke certificates of occupancy for buildings utilizing the private
606	wastewater disposal system.
607	7. Upon connection to the City sewer, abandon the septic tank and leach field per Code
608	requirements when an order to do so has been issued by the City Council or its
609	designated representative, and within the time set forth in such order.
610	8. For private wastewater disposal systems that are approved for use for five (5) years or
611	longer, dual leach fields shall be installed with initial construction. A diverter valve shall be
612	installed to control drainage into either or both leach fields. Each leach field shall be
613	designed to handle one hundred (100) percent of the design flow. For private wastewater
614	disposal systems where use can be reasonably demonstrated to be five (5) years or less,
615	only one (1) leach field may be required. However, an additional area shall be designated,
616	tested for adequacy as a leach field for use, and maintained free from any installation
617	which could inhibit the potential use of said area as a leach field should the first leach field
618	installed be determined by the state, county, or city to have failed or to be inadequate in
619	any way.
620	14.08.250 Failure of Private Wastewater Disposal System
621	A. If a private wastewater disposal system fails and a City sewer is determined to be
622	reasonably available, the City Engineer shall direct the owner to connect to the City sewer
623	pursuant to Section 14.08.240 (A)(2). The owner shall pay to the City all applicable
624	connection fees and reimbursements and shall cause the property to be connected to the
625	City's sewer system in a timely manner.
626	B. The City Engineer shall notify the property owner, in writing, of such determinations, the
627	amount of fees and special fees that must be paid, and any other requirements regarding
628	the connection to the City sewer system.
620	Article IV. Violetiens and Densities
629	Article IV. Violations and Penalties
630	14.08.260 Violations
631	A. Except as this Chapter may otherwise permit, following its effective date, it shall be
632	
	unlawful for any person to connect to the City sewerage system except in the manner
633	unlawful for any person to connect to the City sewerage system except in the manner provided in this Chapter. Any person found to be violating any provision of this Chapter
633634	
	provided in this Chapter. Any person found to be violating any provision of this Chapter

637	cease all violations. All persons shall be held strictly liable for any and all acts of agents or
638	employees under the provisions of this Chapter. Upon receiving notice of any defect
639	arising in any sewer or of any violation of this Chapter, the person or persons having
640	charge of said work shall immediately correct the defect or violation.
641	B. Continued habitation of any building or continued operation of any facility in violation of the
642	provisions of this Chapter or of any other rule or regulation of the City is declared to be a public
643	nuisance. The City may cause proceedings to be brought for the abatement of the occupancy of
644	the building or facility during the period of such violation.
645	14.08.270 Penalties
646	Any person violating the provisions of this Chapter shall be deemed guilty of a
647	misdemeanor unless otherwise deemed to be an infraction by City ordinance or resolution
648	and shall, upon conviction thereof, be punished by a fine consistent with the maximum fine
649	provided for a misdemeanor, or by a fine set as an infraction, or by imprisonment in the
650	county jail.
651	Each and every connection or occupancy in violation of this Chapter shall be deemed a
652	
	separate violation, and each and every day and part of a day a violation of this Chapter

654	Chapter 14.10 Discharge of Industrial (Non-Domestic) Waste
655	Article I Purpose and Policy
656	14.10.010 Application, Purpose and Scope
657	14.10.020 Establishing Rules and Regulations
658	14.10.030 Definitions
659	Article II Prohibitions and Limitations on Discharges
660	14.10.040 Prohibited Discharge Standards
661	14.10.050 National Categorical Pretreatment Standards
662	14.10.060 Local Limits
663	14.10.070 Limitation on Point of Discharge
664	14.10.080 Dilution Prohibited
665	Article III Hauled Wastewater
666	14.10.90 Hauled Waste Requirements
667	Article IV Discharge Permits
668	14.10.210 Wastewater Discharge Permit Required
669	14.10.220 Permit Duration
670	14.10.230 Permit Modification
671	14.10.240 Permit Transfer
672	14.10.250 Permit Application
673	14.10.260 Permit Conditions
674	14.10.270 Permit Violation
675	14.10.280 Permit Revocation
676	Article V Pretreatment
677	14.10.290 Pretreatment of Wastewater
678	Article VI Compliance Monitoring
679	14.10.300 Right to Inspect and Monitor
680	Article VII Reporting Requirements
681	14.10.310 Baseline Monitoring Reports
682	14.10.320 Compliance Schedule
683	14.10.330 Reports on Compliance with Categorical Pretreatment Standard Deadline
684	14.10.340 Periodic Compliance Reports
685	14.10.350 Reports of Changed Conditions
686	14.10.360 Accidental Discharge and Slug Control Plan
687	14.10.370 Representative Wastewater Samples
688	14.10.380 Analytical Requirements
689	14.10.390 Sample Collection

690	14.10.400 Notice of Violation/Repeat Sampling and Reporting
691	14.10.410 Date of Receipt of Reports
692	14.10.420 Recordkeeping
693	14.10.430 Certification Statements
694	14.10.440 Confidential Information
695	Article VIII Public Participation
696	14.10.450 Publication of Industrial Users in Significant Noncompliance
697	Article IX Fees, Rates and Charges
698	14.10.460 Pretreatment Charges and Fees
699	14.10.470 Industrial User Classification
700	Article X Liability and Enforcement
701	14.10.480 Liability
702	14.10.490 Public Nuisances
703	14.10.500 Violations
704	14.10.510 Notice of Violation
705	14.10.520 Consent Orders
706	14.10.530 Compliance Orders
707	14.10.540 Cease and Desist Orders
708	14.10.550 Permit Revocation
709	14.10.560 Authority to Disconnect
710	14.10.570 Civil Penalties
711	14.10.580 Criminal Penalties
712	14.10.590 Injunction
713	14.10.600 Show of Cause Hearing
714	14.10.610 Appeal
715	14.10.620 Severability

716	Article I Purpose and Policy
717	14.10.010 Application, Purpose, and Scope
718	A. This Chapter shall apply to all Users of the Publicly Owned Treatment Works (POTW) of the
719	City of El Paso de Robles (City).
720	B. This Chapter authorizes the issuance of wastewater discharge permits to Industrial Users
721	(IUs), provides for monitoring, compliance, and enforcement activities, and requires Significant
722	Industrial User (SIU) reporting.
723	C. This Chapter sets forth uniform requirements for IUs of the POTW and enables the City to
724	comply with all applicable state and federal laws, including the Clean Water Act (33 United States
725	Code [Act] Section 1251 et seq.) and the General Pretreatment Regulations (Title 40 of the Code
726	of Federal Regulations (CFR) Part 403). The objectives of this Chapter are:
727	1. To prevent the introduction of pollutants into the POTW that will interfere with its operation;
728	2. To prevent the introduction of pollutants into the POTW that will pass through the system,
729	inadequately treated, into receiving waters, or otherwise be incompatible with the system;
730	3. To protect POTW personnel who may be affected by wastewater and sludge in the course of
731	their employment and to protect the general public;
732	4. To promote reuse and recycling of industrial wastewater and sludge from the POTW;
733	5. To enable the City to comply with its NPDES permit conditions, sludge use and disposal
734	requirements, and any other federal or state laws to which the POTW is subject.
735	D. Conflict with State Law. Any provision in this Chapter that conflicts with the provisions of the
736	California Health and Safety Code, Streets and Highways Code, Government Code, or any other
737	California Code shall be automatically superseded by the provisions in said Code until such time
738	as this Chapter can be revised.
739	E. The City will begin inspecting and permitting Class II Industrial Users (as defined in Section
740	14.10.470) with high salinity discharges (e.g., commercial laundry facilities, hotels) on January 1,
741	2011. If the Industrial User must improve Best Management Practices or Pretreatment to comply
742	with this Chapter, the Industrial User may request a compliance schedule by submitting a
743	proposed schedule to the Director. The compliance schedule shall meet the requirements set
744	forth in Section 14.10.320. The compliance schedule may not exceed three years.
745	14.10.020 Establishing Rules and Regulations
746	Except as provided otherwise, the Director of Public Works shall administer, implement,
747	and enforce the provisions of this Chapter. The Director is hereby authorized to establish
748	any rules and regulations necessary for the enforcement of this Chapter, and may
749	delegate and appoint employees of the City to act on his or her behalf.
750	14.10.030 Definitions

751	Terms in this Chapter shall have the meanings set forth in Section 14.08.040 of Chapter
752	14.08.
753	Article II Prohibitions and Limits on Discharges
754	14.10.040 Prohibited Discharge Standards
755	A. No IU shall contribute or cause to be contributed directly or indirectly, any pollutant or
756	wastewater to the POTW without a permit.
757	B. No IU shall contribute or cause to be contributed directly or indirectly, any pollutant or
758	wastewater that will cause pass through or interference at the POTW whether or not the II
759	is subject to national Categorical Pretreatment Standards or any other national, state, or
760	local pretreatment standards or requirements.
761	C. Specific Prohibitions. No User, domestic or industrial shall contribute or cause to be
762	contributed the following substances to the POTW:
763	1. Any liquids, solids or gases which by reason of their nature or quantity are, or may be,
764	sufficient either alone or by interaction with other substances to cause a fire or explosion
765	or be injurious in any other way to the POTW or to the operation of the POTW. This
766	includes, but is not limited to, wastestreams with a closed-cup flashpoint of less that 140
767	degrees Fahrenheit or 60 degrees Centigrade using the test methods specified in 40 CFR
768	261.21;
769	2. Any waste having a pH less than 6 or more than 9 or having any corrosive property
770	capable of causing damage or hazards to structures, equipment, and/or POTW personnel
771	Prohibited materials include, but are not limited to, acids, caustics, sulfides, concentrated
772	chloride and fluoride compounds, and substances that will react with water to form acidic
773	products;
774	3. Solid or viscous wastes in amounts which will, or may, obstruct the flow in the City
775	sewer or POTW resulting in interference with the proper operation of the City's sewage
776	system. Prohibited materials include, but are not limited to, fats, oils or grease of animal o
777	vegetable origin, debris, garbage with particles greater than one-half inch in any
778	dimension, animal guts or tissues, paunch, manure, bones, hair, hides or fleshings,
779	entrails, whole blood and/or components, feathers, ashes, cinders, sand, spent lime,
780	concrete or concrete slurry, stone or marble, dust, metal, glass, straw, shavings, grass
781	clippings, cut roots, rags, spent grains, spent hops, waste paper, wood, plastics, tar,
782	asphalt residues, residues from refining or processing of fuel or lubricating oil, mud and
783	glass grinding or polishing wastes;
784	4. Any pollutants, including oxygen-demanding pollutants (BOD, etc.) released at a slow
785	rate and/or pollutants with a concentration that either alone or by interaction with other
786	pollutants, will cause interference with the POTW:

- 5. Any wastewater having a temperature greater than one hundred fifty degrees
- 788 Fahrenheit (sixty-six degrees Celsius) into the sewer, or which will inhibit biological activity
- in the treatment plant resulting in interference, but in no case wastewater that causes the
- temperature at the introduction of the treatment plant to exceed one hundred four degrees
- 791 Fahrenheit (forty degrees Celsius);
- 792 6. Petroleum oil, nonbiodegradable cutting oil, or products of mineral oil origin in amounts
- that will cause interference or pass through;
- 794 7. Oils and grease in excess of one hundred (100) mg/L, whether emulsified or not, shall
- not be discharged into the public sewer system. Oils and greases may be from living or
- 796 nonliving sources or contain substances that may solidify or become viscous at
- temperatures between thirty-two degrees and one hundred fifty degrees Fahrenheit at the
- 798 point of discharge into the system or in amounts that will cause interference or pass
- 799 through;
- 8. Pollutants that result in the presence of toxic gases, vapors, or fumes within the POTW
- in a quantity that may cause acute worker health and safety problems;
- 9. Noxious or malodorous solids, liquids or gases, or other wastewater which, either
- singularly or by interaction with other wastes, are capable of creating a public nuisance or
- hazard to life or prevent entry into sewers for maintenance or repair;
- 805 10. Hazardous Waste. All Users are prohibited from discharging hazardous waste;
- 11. Wastewater which imparts color not removable by the treatment process, including but
- not limited to, inks, dyes and tanning solutions, which consequently impart color to the
- 808 treatment plant's effluent;
- 809 12. Wastewater containing any radioactive wastes or isotopes except in compliance with
- 810 applicable state and federal regulations;
- 13. Any trucked or hauled pollutants; except at discharge points designated by the City,
- with City pre-approval, and in accordance with Section 14.10.90 of this Chapter;
- 813 14. Infectious wastes from hospitals, clinics, out-patient clinics, medical and dental offices,
- 814 mortuaries, etc.; pathologic specimens; disposable hypodermic needles, syringes and
- associated articles (whether ground or not); recognizable portions of the human anatomy;
- solid wastes generated in the rooms of patients who are isolated because of a suspected
- 817 or diagnosed communicable disease; wastes excluded by other provisions of this Chapter
- 818 except as specifically permitted for; or any other waste defined by the health officer of San
- 819 Luis Obispo County as being infectious;
- 820 15. Any wastewater containing toxic substances in sufficient quantity, either singularly or
- by interaction with other substances, to injure or to interfere with any wastewater treatment
- 822 process, to constitute a hazard to humans or animals, to create a toxic effect in the
- 823 receiving waters of the POTW or to exceed the limitations set forth in Categorical

- 824 Pretreatment Standards or of this section. A toxic pollutant shall include, but need not be
- limited to, any pollutant identified in Section 307(a) of the Federal Clean Water Act;
- 826 16. Any wastewater which is capable of causing either alone or by interaction with other
- substances, the POTW effluent or any other product of the treatment process, residuals,
- 828 or biosolids to be unsuitable for reclamation or reuse or to interfere with the reclamation
- 829 process;
- 17. Detergents, surface-active agents, or other substances which might cause excessive
- foaming in the POTW;
- 832 18. Draining of swimming pools and spas.
- a. The contents of a salt water swimming pool (including electrolytic cell backwash) shall
- not be discharged to the sanitary sewer, storm drain system or natural water way.
- b. The contents of chlorinated swimming pools and/or spas (including filter backwash from
- 836 swimming pools and/or spas) shall not be discharged into the sewer system without first
- applying for and receiving written permission from the Director. Such approved discharge
- must be accomplished in the manner specified herein.
- i. The water is discharged by pumping and shall not exceed the capacity of the line.
- 840 ii. Each swimming pool discharging to a sewer system pursuant to a permit shall be
- equipped with an indirect waste connection to preclude any possibility of a backflow of
- sewage into the swimming pool or piping system.
- 19. Discharges from water softening.
- Portable exchange water softening systems should be used instead of on-site
- regeneration water softening units. Discharges from commercial, industrial, and
- residential on-site regeneration water softening units must comply with the following:
- a. Commercial or Industrial Users discharging water-softening brine shall not exceed the
- limits listed in Section 14.10.060(B) of this Chapter. A commercial operation not in
- compliance with the local limits shall be deemed an IU and will be required to obtain an
- industrial wastewater discharge permit.
- b. High-efficiency reverse osmosis units do not generate salt and are the best technology
- available for water softening. Commercial or Industrial Users that use high-efficiency
- reverse osmosis units instead of on-site regeneration water softening units may be eligible
- for User-specific exceptions to the local limits listed in Section 14.10.060(B) of this
- 855 Chapter.
- c. New residential housing and replacement water softener units shall meet the following
- 857 requirements:
- i. On-site regeneration water softener units must be equipped with salt efficiency controls
- to regenerate on hardness demand or other approved techniques.

- 860 ii. Salt efficiency control units shall be a sealed tamper-proof type that controls the most
- efficient regeneration setting or a portable exchange unit.
- 862 20. Shredded garbage. Discharges containing improperly shredded garbage that has not
- been ground or comminuted to such a degree that all particles will be carried freely in
- 864 suspension under normal flow conditions in the public sewers or with any particle greater
- than one-half inch in any dimension are not allowed. Acceptable discharges from garbage
- grinders are as follows:
- a. Wastes generated in preparation of food in a residence;
- 868 b. Where a nonresidential IU has an existing garbage grinder or a proposed new grinder
- and has approval for that specific use from the City. Such grinders must be kept in proper
- working order. Prohibited discharges from garbage grinders are as follows:
- i. Garbage grinders shall not be used for grinding plastic, paper products, inert materials,
- garden refuse or waste products resulting from the handling, storage and sale of fruit and
- 873 vegetables in wholesale and retail produce establishments and wastes from entities
- 874 engaged in the preparation, processing or preserving of food not intended primarily for
- immediate consumption.
- 876 c. The City reserves the right to prohibit the use of garbage grinders in commercial
- applications if this waste creates excessive problems in the sewerage system.
- 878 21. Rain, storm water, surface water, ground water, seepage, roof runoff, street or yard
- drainage, subsurface drainage, ponds or lawn sprays or the uncontaminated water or
- water added for the purpose of diluting wastes which exceed maximum concentration
- 881 limitations;
- 22. It shall be unlawful to discharge to any storm drain or natural outlet any wastewater
- derived from residential dwellings, commercial buildings, industrial and manufacturing
- facilities, and institutions, including domestic sewage, and industrial wastewater petroleum
- products, or otherwise polluted water;
- 886 23. Outdoor connections, drains and/or wash racks connected to the City sewer shall be
- 887 covered and bermed to prevent the inflow of storm water and shall be equipped with sand-
- 888 oil interceptor approved by the Director.

889 14.10.050 National Categorical Pretreatment Standards

- 890 A. National Categorical Pretreatment Standards shall be in addition to prohibited discharge
- standards cited in Sections 14.10.040 and 14.10.060 of this Chapter.
- 892 B. All applicable federal pretreatment standards that specify quantities or concentrations of
- 893 pollutants that may be discharged by a specific industrial category will be enforced by the City as
- required by Section 309(e) and (f) et seg. of the Federal Clean Water Act.
- 895 C. Upon the promulgation of the Federal Categorical Pretreatment Standards for a particular
- industrial category, the federal standard, if more stringent than limitations and prohibitions

- imposed under this Chapter for a source in that category, shall immediately supersede the limitations imposed under this Chapter.
- D. When wastewater subject to a Categorical Pretreatment Standard is mixed with wastewater not regulated by the same standard, the Director shall impose an alternate limit in accordance with 40 CFR 403.6(e).

902 14.10.060 Local Limits

- A. Pursuant to 40 CFR 403.5(c) the City reserves the right to establish, by ordinance or resolution, more stringent standards or prohibitions on discharges to the POTW consistent with this Chapter if:
- 1. The City determines that the limitations and prohibitions in this Chapter or other City
 Codes or resolutions may not be sufficient to protect the operation of the POTW; or
- 2. The City determines that the limitations and prohibitions in this Chapter or other City
 Codes or resolutions, may not be sufficient to enable the POTW to comply with water
 quality standards or effluent limitations specified in the City's POTW NPDES permit.
- B. The following pollutant limits are established to protect against pass through and interference.
 No User shall discharge wastewater containing in excess of the following:

Constituent	Concentration Limit
Ammonia	20.0 mg/L
Boron	5.00 mg/L
Cadmium	0.10 mg/L
Chromium	3.70 mg/L
Copper	0.30 mg/L
Cyanide	0.01 mg/L
Nickel	1.90 mg/L
Molybdenum	1.10 mg/L
Selenium	0.27 mg/L
Zinc	4.00 mg/L
Sulfate	200 mg/L
Total Dissolved Solids (TDS).	1000 mg/L
Sodium	200 mg/L
Chloride	150 mg/L
Biological Oxygen Demand (BOD)	360 mg/L

	Constituent Concentration Limit
	Total suspended solids (TSS) 360 mg/L
	Oil and Grease 100 mg/L
914	(All concentrations for metallic substances are for "total" metal unless indicated otherwise
915	C. The Director may develop Best Management Practices (BMPs), by ordinance or in
916	wastewater discharge permits, to implement local limits and the requirements in Section
917	14.10.040.
918	D. Maximum concentrations of pollutants allowable in wastewater discharges to the
919	POTW are established by the Director and shall be adopted by the City Council by
920	resolution to insure compliance with the POTW's NPDES requirements or more restrictive
921	pretreatment standards prescribed by the California Regional Water Quality Control Boar
922	or the EPA.
923	14.10.070 Limitation on Point of Discharge
924	A. No User or IU shall discharge any substances directly into a manhole or other opening
925	in a public sewer, other than through an approved building sewer, without the City's prior
926	approval.
927	B. Wastes prohibited by this Chapter shall not be processed or stored in such a manner
928	that they could be discharged to the POTW. All floor drains located in process or
929	materials storage areas must be permanently sealed or discharged to the IU's
930	pretreatment facility before connecting with the POTW.
931	
932	14.10.80 Dilution Prohibited
933	No User or IU shall ever increase the use of potable or process water, or in any way
934	attempt to dilute a discharge, as a partial or complete substitute for adequate treatment to
935	achieve compliance with any specific discharge limitation or requirement.
936	Article III Hauled Waste
937	14.10.90 Hauled Waste
938	A. Hauled waste may be introduced into the POTW only at locations designated by the
939	Director, with the Director's prior consent, and at such times as established by the
940	Director. Such waste shall not violate Sections 14.10.040 -14.10.060 of this Chapter or
941	any other requirements established by the City.
942	B. The Director may require haulers of industrial waste to obtain wastewater discharge
943	permits. The Director may prohibit the disposal of hauled industrial waste.
773	pormito. The Director may promote the disposal of fladied industrial waste.

944 C. The hauler shall provide the Director with waste analysis of any load prior to discharge. 945 The Director may collect samples of each hauled load to ensure compliance with 946 applicable standards. 947 D. Industrial waste haulers must provide a waste-tracking form for every load. This form 948 shall include, at a minimum, the name and address of the industrial waste hauler, permit 949 number, truck identification, names and addresses of sources of waste, and volume and 950 characteristics of waste. 951 952 **Article IV – Discharge Permits** 953 14.10.210 Wastewater Discharge Permit Required 954 It shall be unlawful for any IU to connect to, or to discharge to, the City sewer without first 955 obtaining an industrial wastewater discharge permit from the City. 956 14.10.220 Permit Duration 957 Permits shall be issued for a specified time, not to exceed five (5) years from the effective 958 date of the permit. A permit may be issued for a period of less than five (5) years or may 959 be stated to expire on a specific date. 960 14.10.230 Permit Modification 961 A. The Director may modify any industrial wastewater discharge permit for good cause, 962 including but not limited to, the following reasons: 963 1. To incorporate any new or revised federal, state, or local pretreatment standards or 964 requirements; 965 2. To address significant alterations or additions to the IU's operation, processes, or 966 wastewater volume or character since the time of the industrial wastewater discharge 967 permit issuance; 968 3. To add information indicating that the permitted discharge poses a threat to the City's 969 POTW, personnel, or the receiving waters; 970 4. In light of a violation of any terms or conditions of the industrial wastewater discharge 971 permit; 972 5. In light of misrepresentations or failure to fully disclose all relevant facts in the industrial 973 wastewater discharge permit application or in any required reporting; 974 6. To correct typographical or other errors in the industrial wastewater discharge permit. 975 B. An IU shall be informed of any proposed changes in its permit at least thirty (30) 976 calendar days prior to the effective date of the change. 977

14.10.240 Permit Transfer

- 978 A. Industrial wastewater discharge permits are issued to a specific IU for a specific
- operation. An industrial wastewater discharge permit shall not be reassigned, transferred,
- nor sold to a new owner, new IU, different premises, or a new or changed operation. Any
- 981 succeeding owner or IU shall immediately notify the City of the change of ownership and
- complete an industrial wastewater discharge permit application and shall comply with the
- terms and conditions of the existing permit until a new permit is issued.
- 984 B. Industrial wastewater discharge permits shall be voidable upon cessation of operations or
- transfer of business ownership. All industrial wastewater discharge permits issued to an IU are
- yoid upon the issuance of a new industrial wastewater discharge permit to that IU.
- **987 14.10.250 Permit Application**.
- 988 A. All IUs required to obtain a wastewater discharge permit shall complete and file an
- 989 industrial wastewater discharge permit application with the City within thirty (30) days of
- receiving a notice to apply. Proposed new IUs shall apply ninety (90) days prior to actual
- onnection to the municipal sewer.
- B. In support of its application, the applicant must submit the information requested in the
- application form issued by the City.
- 994 C. The Director will evaluate the data furnished by the IU and may require additional
- information. Incomplete or inaccurate applications will not be processed and will be
- returned to the IU for revision. After evaluation and acceptance of the information
- 997 furnished, the Director may issue an industrial wastewater discharge permit subject to the
- 998 terms and conditions provided herein.
- 999 D. All industrial wastewater discharge permit applications, IU reports, and certification
- 1000 statements must be signed by an Authorized Representative of the IU and contain the
- certification statement set forth in Section 14.10.430(A).
- 1002 E. If the designation of an Authorized Representative is no longer accurate because a
- 1003 different individual or position has assumed responsibility either for the overall operation of
- the facility or for the overall environmental matters of the company, a new written
- 1005 authorization satisfying the requirements of this section must be submitted to the Director
- prior to, or together with, any reports to be signed by an Authorized Representative.
- 1007 F. A denial of a permit application may be appealed pursuant to the procedures in Section
- 1008 14.10.610.
- 1009 **14.10.260 Permit Conditions**
- 1010 Industrial wastewater discharge permits shall be expressly subject to all provisions of this
- 1011 Chapter and all other applicable regulations, and IU charges and fees established by the
- 1012 City. The conditions of the permit shall be uniformly enforced in accordance with this

- 1013 Chapter and applicable state and federal regulations. Permit contents and requirements
- may include, but are not limited to, the following:
- 1015 1. A statement that indicates the industrial wastewater discharge permit issuance date, expiration
- date, and effective date;
- 1017 2. A statement that the industrial wastewater discharge permit is nontransferable;
- 1018 3. Effluent limits, which may include numerical limits or Best Management Practices based on
- 1019 applicable Pretreatment Standards;
- 1020 4. Self monitoring, sampling, reporting, notification, and record-keeping requirements. These
- requirements shall include an identification of pollutants or Best Management Practices to be
- monitored, sampling location, sampling frequency, and sample type based on federal, state, and
- 1023 local law;
- 5. Requirements to control slug discharges, if determined by the Director to be necessary;
- 1025 6. The process for seeking a waiver from monitoring for a pollutant neither present nor expected
- to be present in the discharge in accordance with Section 14.10.340(B);
- 7. Any grant of the monitoring waiver by the Director pursuant to Section 14.10.340(B);
- 1028 8. Limits on the average and/or maximum rate of discharge, time of discharge, and/or
- requirements for flow regulation and equalization;
- 9. Requirements for the installation of pretreatment technology, pollution control, or construction
- of appropriate containment devices, designed to reduce, eliminate, or prevent the introduction of
- 1032 pollutants into the treatment works;
- 1033 10. Requirements for the development and implementation of spill control plans or other special
- 1034 conditions including management practices necessary to adequately prevent accidental,
- unanticipated, or nonroutine discharges;
- 1036 11. Development and implementation of waste minimization plans to reduce the amount of
- pollutants discharged to the POTW;
- 1038 12. Requirements for installation and maintenance of inspection and sampling facilities and
- equipment, including flow measurement devices;
- 1040 13. A statement that compliance with the industrial wastewater discharge permit does not relieve
- the permittee of responsibility for compliance with all applicable federal and state pretreatment
- standards, including those which become effective during the term of the industrial wastewater
- 1043 discharge permit;
- 1044 14. Other conditions as deemed appropriate by the Director to ensure compliance with this
- 1045 Chapter and state and federal laws, rules, and regulations; and
- 1046 15. A statement of applicable civil and criminal penalties for violation of pretreatment
- standards and requirements, and any applicable compliance schedule. Such schedule
- may not extend the time for compliance beyond that required by applicable federal, state,
- 1049 or local law.

1050	14.10.270 Permit Violation
1051	A. When it is determined that a specific condition and/or discharge is in violation of this Chapter
1052	or any permit condition, or any limit imposed, enforcement actions shall be initiated as provided in
1053	this Chapter. Discharge violations include, but are not limited to, the following:
1054	1. Unlawful discharges of wastewater and compounds prohibited by this Chapter;
1055	2. Discharges violating permit conditions or limitations;
1056	3. Discharges in violation of this Chapter;
1057	4. Discharges endangering the environment or the public's health, safety and/or welfare;
1058	5. Discharges endangering the City's sewerage system, and/or City personnel;
1059	B. Nondischarge violations constitute noncompliance with the City's rules and regulations and
1060	may also create a nuisance or have severe impacts on the City's ability to serve the public. This
1061	includes noncompliance with City Standard Details and Specifications.
1062	14.10.280 Permit Revocation
1063	A. An industrial wastewater discharge permit may be revoked for violating permit conditions or
1064	provisions of this Chapter. Violations include, but are not limited to, the following:
1065	1. Failure to notify the Director of significant changes to the IU's operations, systems, or
1066	wastewater prior to the changed discharge;
1067	2. Misrepresentation or failure to fully disclose all relevant facts in the industrial wastewater
1068	discharge permit application;
1069	3. Falsifying self monitoring reports and certification statements;
1070	4. Tampering with monitoring equipment;
1071	5. Refusing to allow the Director timely access to facility premises and records;
1072	6. Failure to meet effluent limitations;
1073	7. Failure to pay fines;
1074	8. Failure to provide advance notice of the transfer of business ownership of a permitted
1075	facility;
1076	9. Failure to meet compliance schedules; or
1077	10. Violation of any Pretreatment Standard or Requirement, or of any terms of the industrial
1078	wastewater discharge permit or of this Chapter.
1079	B. Before revoking a permit, the Director shall issue to the IU a Notice of Violation in accordance
1080	with Section 14.10.510. If the IU does not correct the violation within the time period specified in
1081	the notice, the Director shall revoke the permit. An IU whose permit has been revoked may
1082	appeal the Director's action pursuant to the procedures in Section 14.10.610.
1083	Article V - Pretreatment

Article V - Pretreatment

14.10.290 Pretreatment of Wastewater

1084

- 1085 A. IUs shall provide wastewater treatment as necessary to comply with this Chapter and
- shall achieve compliance with all applicable Categorical Pretreatment Standards, local
- limits, and the prohibitions set out in this Chapter within the time limitations specified by
- 1088 the EPA, the state, or the Director, whichever is more stringent. Any facilities necessary
- for compliance shall be provided, operated, and maintained in good working order, at the
- 1090 IU's expense.
- B. In the construction of new facilities, all domestic wastewaters from restrooms, showers,
- drinking fountains, etc., shall be kept separate from all industrial wastewaters until the
- industrial wastewaters have passed through any required pretreatment system or device
- and the industrial wastewater monitoring facility or stations.
- 1095 C. Detailed plans describing such facilities and operating procedures shall be submitted to
- the City for review, and shall be acceptable to the City before such facilities are
- 1097 constructed. The City's review of such plans and operating procedures shall in no way
- relieve the IU from the responsibility of modifying such facilities as necessary to produce a
- discharge acceptable to the City under the provisions of this Chapter. Any subsequent
- proposed changes to the pretreatment facilities or methods of operation shall be reported
- to, and be approved by, the City prior to the IU's implementation of the changes.
- D. Grease, oil and sand interceptors or gravity separating devices shall be installed when,
- 1103 in the opinion of the Director, they are necessary for the proper handling of wastewater
- 1104 containing excessive amounts of grease and oil, or sand; except that such interceptors
- shall not be required for residential dwelling units. All interception units shall be of a type
- and capacity approved by the Director in accordance with the California Plumbing Code
- and shall be of a capacity sufficient to provide the appropriate quality of effluent per this
- 1108 Chapter and shall be located where it would be easily accessible for cleaning and
- inspection. Interceptors shall be maintained at the owner's expense, in continuous
- 1110 efficient operating condition, and shall provide for the periodic removal of the accumulated
- 1111 grease. No such collected grease shall be introduced into any drainage piping or public or
- 1112 private sewer.
- 1. Food establishments shall install an approved grease interceptor. Requirements for
- the installation of a grease interceptor shall be determined by the City using the California
- 1115 Plumbing Code as a guide.
- 1116 2. Each business establishment for which a grease interceptor is required shall implement
- 1117 grease reducing practices and have an interceptor which shall serve only that business
- 1118 establishment.
- 1119 3. All car washes, vehicle/equipment wash areas, service stations, and garages shall be
- required to install a gravity separating device designed to prevent the discharge of sand,

1121	silt, oil, and grease to the municipal sewer. Gravity separating devices located outdoors
1122	shall be covered and bermed to prevent the inflow of storm water.
1123	4. If the City finds that a grease interceptor or gravity separating device installed prior to
1124	the effective date of this Chapter is incapable of adequately retaining the grease, sand or
1125	oil in the wastewater effluent, an adequate grease interceptor or gravity separating device
1126	shall be installed at the owner's expense within the time period specified in a written notice
1127	from the City.
1128	E. Discharges from commercial grinders must be treated independently of any grease
1129	interceptor, at the owner's expense, to reduce the suspended solids daily flow or
1130	objectionable characteristics or constituents to comply with the limits contained in this
1131	Chapter.
1132	Article VI-Compliance Monitoring
1122	44.40.200 Pinkt to Inspect and Maniter
1133	14.10.300 Right to Inspect and Monitor The Director through a program of increation and coupling shall answer compliance with the
1134	The Director, through a program of inspection and sampling, shall ensure compliance with the
1135	provisions of this Chapter, the IU's wastewater discharge permit and all applicable federal and
1136	state laws and regulations. The City may inspect the facilities of any person to ascertain whether
1137	the purpose of this Chapter is being met and all prohibitions, limitations and requirements are
1138	being complied with. Upon presentation of proper identification, persons or occupants of premises
1139	where waste or wastewater is created or discharged shall allow the City ready access, at all
1140	reasonable times, to all parts of the premises for the purposes of inspection, sampling, records
1141	examination, evidence gathering or in the performance of any of its other duties. In addition, the
1142	City may enter an IU's property at any hour under emergency circumstances involving the City's
1143	sewerage system.
1144	1. During the inspection and compliance monitoring activities, the City shall observe all
1145	reasonable security, safety and sanitation measures. In addition, the City shall observe
1146	reasonable precautionary measures specified by the IU. Where an IU has security measures in
1147	force, which would require proper identification and clearance before entry onto the IU's
1148	premises, the IU shall make necessary arrangements with its security guards so that upon
1149	presentation of suitable identification, City personnel will be permitted to enter, without delay, for
1150	the purposes of performing their specific responsibilities.
1151	2. The City may sample the wastewater from any IU or require the IU to sample the wastewater
1152	at the IU's own expense to ascertain whether the intent of this ordinance is being met and that the
1153	User is complying with all requirements.
1154	3. The City shall have the right to set up on the IU's property such devices as are necessary to
1155	conduct sampling, inspection, compliance monitoring and/or metering operations.

1156	4. The Director may require the III to furnish and install, at the III's own expense, a central
	4. The Director may require the IU to furnish and install, at the IU's own expense, a control
1157	manhole in the building sewer or monitoring equipment as necessary and of a design and
1158	location approved by the City to facilitate inspection, sampling and flow measurements. The
1159	facility's sampling and monitoring equipment shall be maintained at all times in a safe and proper
1160	operating condition by the IU at its own expense. All devices used to measure wastewater flow
1161	and quality shall be calibrated at the frequency described in the industrial wastewater discharge
1162	permit to ensure their accuracy. The IU shall provide the City with unrestricted access to the
1163	sampling station at all times.
1164	5. If the City requires or the IU chooses to install monitoring equipment, the equipment shall be
1165	calibrated, as recommended by the manufacturer and approved by the City. This must be done
1166	by qualified personnel. A photocopy of the calibration results and/or certificate shall be sent to the
1167	City.
1168	6. Where pretreatment or monitoring facilities are required, prior to discharging wastewater to the
1169	sewerage system, detailed plans showing the pretreatment facility and operating procedures shall
1170	be submitted to the City for review and shall be approved by the City before construction of the
1171	facility. All such plans and construction shall be done at the IU's expense. The review and
1172	approval of such plans and operating procedures will in no way relieve the IU from the
1173	responsibility of modifying the facility as necessary to produce an effluent acceptable to the City
1174	under the provisions of this Chapter, and the IU shall remain responsible for compliance with all
1175	applicable ordinances, Codes, regulations and orders of any governmental authority. Any
1176	subsequent proposed changes in the pretreatment facilities or methods of operation shall be
1177	reported to, and be approved by, the City prior to the IU's implementation of the changes.
1178	7. Any temporary or permanent obstruction to safe and easy access to the facility to be inspected
1179	and/or sampled shall be promptly removed by the IU at the written or verbal request of the
1180	Director and shall not be replaced. The costs of clearing such access shall be borne by the IU.
1181	8. Unreasonable delays in allowing the Director access to the IU's premises shall be a violation
1182	of this section.
1183	Article VII - Reporting Requirements
1184	14.10.310 Baseline Monitoring Reports.
1185	A. Within either one hundred eighty (180) days after the effective date of a Categorical
1186	Pretreatment Standard, or the final administrative decision on a category determination
1187	under 40 CFR 403.6(a)(4), whichever is later, existing Categorical Industrial Users
1188	currently discharging to, or scheduled to discharge to, the POTW shall submit to the
1189	Director a report containing the information listed in Section 14.10.310(C), below.

- B. At least ninety (90) days prior to commencement of their discharge, new sources, and
- sources that become Categorical Industrial Users subsequent to the promulgation of an
- applicable categorical standard, shall submit to the Director a report containing the
- information listed in Section 14.10.310(C), below. A new source shall report the method of
- pretreatment it intends to use to meet applicable Categorical Standards. A new source
- shall also give estimates of its anticipated flow and quantity of pollutants to be discharged.
- 1196 C. IUs described above shall submit the information set forth below:
- 1. Identifying Information. The IU shall submit the name and address of the facility including the
- name of the operator and owners;
- 2. Permits. The IU shall submit a list of any environmental control permits held by or for the
- 1200 facility
- 1201 3. Description of Operations. The IU shall submit a brief description of the nature, average rate of
- 1202 production, and Standard Industrial Classification of the operation(s) carried out by such IU. This
- description shall include a schematic process diagram that indicates points of discharge to the
- 1204 POTW from the regulated processes.
- 1205 4. Flow Measurement. The IU shall submit information showing the measured average daily and
- maximum daily flow, in gallons per day, to the POTW from each of the following:
- 1207 a. Regulated process streams; and
- 1208 b. Other streams as necessary to allow use of the combined wastestream formula of 40 CFR
- 1209 403.6(e). The City may allow for verifiable estimates of these flows where justified by cost or
- 1210 feasibility considerations.
- 1211 5. Measurement of Pollutants.
- a. The IU shall identify the pretreatment standards applicable to each regulated process; and
- b. The IU shall submit the results of sampling and analysis identifying the nature and
- 1214 concentration of regulated pollutants in the discharge from each regulated process. Both daily
- maximum and average concentration shall be reported. The sample shall be representative of
- daily operations.
- 1217 c. A minimum of four (4) grab samples must be used for pH, cyanide, total phenols, oil and
- grease, sulfide, and volatile organics. For all other pollutants, twenty-four (24) hour composite
- samples must be obtained through flow-proportional composite sampling techniques where
- feasible. The City may waive flow-proportional composite sampling for any IU that demonstrates
- that flow-proportional sampling is infeasible. In such cases, samples may be obtained through
- 1222 time-proportional composite sampling techniques or through a minimum of four (4) grab samples
- where the IU demonstrates that this will provide a representative sample of the effluent being
- 1224 discharged.
- 1225 d. The IU shall take a minimum of one (1) representative sample to compile the data necessary
- 1226 to comply with the requirements of this section.

1227	e.	Sample	es shoi	ıld be	taken	immed	iately	downstream	from	pretreatment	facilities	if such	exist	0

- immediately downstream from the regulated process if no pretreatment facility exists. If other
- wastewaters are mixed with the regulated wastewater prior to pretreatment, the IU shall measure
- the flows and concentrations necessary to allow use of the combined wastestream formula of 40
- 1231 CFR 403.6(e) in order to evaluate compliance with the pretreatment standards. Where an
- alternate concentration has been calculated in accordance with 40 CFR 403.6(e) this adjusted
- limit along with supporting data shall be submitted to the City.
- 1234 f. Sampling and analysis shall be performed in accordance with the techniques prescribed in 40
- 1235 CFR part 136 and amendments thereto. Where 40 CFR part 136 does not contain sampling or
- analytical techniques for the pollutant in question, or where the Director determines that the part
- 1237 136 sampling and analytical techniques are inappropriate for the pollutant in question, sampling
- and analyses shall be performed by using validated analytical methods or any other applicable
- sampling and analytical procedures, including procedures suggested by the City or other parties,
- and approved by the Director.
- g. The City may allow the submission of a baseline report that utilizes only historical data so long
- as the data provides information sufficient to determine the need for industrial pretreatment
- measures.
- h. The baseline report shall indicate the time, date, and place of sampling, and methods of
- analysis, and shall certify that such sampling and analysis is representative of normal work cycles
- and expected pollutant discharges to the POTW.
- 1247 6. Compliance Certification. The IUs shall submit a statement, reviewed by an authorized
- representative of the IU (as defined in Section 14.08.040 and certified to by a qualified
- professional) indicating whether pretreatment standards are being met on a consistent basis, and,
- 1250 if not, whether additional Operation and Maintenance (O and M) and/or additional pretreatment is
- required for the IU to meet the pretreatment standards and requirements.
- 7. Compliance Schedule. If additional pretreatment and/or O and M will be required to meet the
- 1253 pretreatment standards, the IU shall submit the shortest schedule by which the IU will provide
- such additional pretreatment and/or O and M. The completion date in this schedule shall not be
- later than the compliance date established for the applicable pretreatment standard. A
- 1256 compliance schedule shall meet the requirements set forth in Section 14.10.320 of this Chapter.
- 1257 8. All baseline monitoring reports must be certified in accordance with Section 14.10.430(A) of
- this Chapter and be signed by an Authorized Representative as defined in Section 14.08.040.
- **1259 14.10.320 Compliance Schedule**
- 1260 A. The schedule shall contain progress increments in the form of dates for the
- 1261 commencement and completion of major events leading to the construction and operation
- of additional pretreatment required for the IU to meet the applicable Pretreatment
- 1263 Standards (such events include, but are not limited to, hiring an engineer, completing

- preliminary and final plans, executing contracts for major components, commencing and
- 1265 completing construction, and beginning and conducting routine operation);
- 1266 B. No increment referred to above shall exceed nine (9) months;
- 1267 C. The IU shall submit a progress report to the Director no later than fourteen (14) days
- 1268 following each date in the schedule and the final date of compliance, including in such
- 1269 progress report, at a minimum, whether it complied with the increment of progress, the
- reason for any delay, and if appropriate, the steps taken by the IU to return to the
- 1271 established schedule; and
- 1272 D. In no event shall more than nine (9) months elapse between submissions of such
- 1273 progress reports to the Director.
- 1274 14.10.330 Reports on Compliance with Categorical Pretreatment Standard Deadline.
- 1275 Within ninety (90) days following the date for final compliance with applicable Categorical
- 1276 Pretreatment Standards, or in the case of a New Source, following commencement of the
- 1277 introduction of wastewater into the POTW, any User subject to such Pretreatment
- 1278 Standards and Requirements shall submit to the Director a report containing the
- information described in 40 CFR 403.12(d).
- 1280 14.10.340 Periodic Compliance Reports
- 1281 A. All SIUs must, at a frequency determined by the Director, submit no less than twice per
- 1282 year, in June and December or on other dates specified, reports indicating the nature and
- 1283 concentration of pollutants in the discharge that are limited by Pretreatment Standards,
- and the measured or estimated average and maximum daily flows for the reporting period.
- 1285 In cases where the Pretreatment Standard requires compliance with a Best Management
- 1286 Practice or pollution prevention alternative, the SIU must submit documentation required
- 1287 by the Director or the Pretreatment Standard necessary to determine the compliance
- 1288 status of the SIU. The Director may modify the months during which the above reports are
- 1289 to be submitted.
- 1290 B. The City may authorize a SIU subject to a Categorical Pretreatment Standard to forego
- sampling of a pollutant regulated by a Categorical Pretreatment Standard if the SIU has
- demonstrated through sampling and other technical factors that the pollutant is neither
- present nor expected to be present in the discharge, or is present only at background
- 1294 levels from intake water and without any increase in the pollutant due to activities of the
- 1295 SIU [See 40 CFR 403.12(e)(2)]. This authorization is subject to the following conditions:
- 1. The waiver may be authorized where a pollutant is determined to be present solely due
- 1297 to sanitary wastewater discharged from the facility provided that the sanitary wastewater is
- not regulated by an applicable Categorical Standard and otherwise includes no process
- 1299 wastewater.

- 1300 2. The monitoring waiver is valid only for the duration of the effective period of the
- wastewater discharge permit, but in no case longer than five (5) years. The SIU must
- submit a new request for the waiver before the waiver can be granted for each subsequent
- 1303 wastewater discharge permit.
- 1304 3. In demonstrating that a pollutant is not present, the SIU must provide data from at least
- one (1) sampling of the facility's process wastewater prior to any treatment present at the
- facility that is representative of all wastewater from all processes.
- 4. The request for a monitoring waiver must be signed by an Authorized Representative
- as defined in Section 14.08.040, and must include the certification statement in Section
- 1309 14.10.430(C).
- 1310 5. Non-detectable sample results may be used to demonstrate that a pollutant is not
- present only if the EPA-approved method from 40 CFR Part 136 with the lowest minimum
- detection level for that pollutant was used in the analysis.
- 1313 6. Any grant of the monitoring waiver by the Director must be included as a condition in
- the SIU's permit. The reasons supporting the waiver and any information submitted by the
- 1315 SIU in its request for the waiver must be maintained by the City for three (3) years after
- expiration of the waiver.
- 7. Upon approval of the monitoring waiver and revision of the SIU's permit by the Director,
- the SIU must certify on each report with the statement in Section 14.10.430(C) that there
- 1319 has been no increase in the pollutant in its wastestream due to activities of the SIU.
- 8. In the event that a waived pollutant is found to be present or is expected to be present
- because of changes that occur in the SIU's operations, the SIU must immediately notify
- the Director and comply with the monitoring requirements of Section 14.10.340(A), or
- other more frequent monitoring requirements imposed by the Director.
- 9. This provision does not supersede certification processes and requirements
- 1325 established in Categorical Pretreatment Standards, except as otherwise specified in the
- 1326 Categorical Pretreatment Standard.
- 1327 C. All periodic compliance reports must be signed and certified in accordance with
- 1328 Section 14.10.430(A) of this Chapter.
- 1329 14.10.350 Reports of Changed Conditions
- 1330 A. All IUs must promptly notify the Director in advance of any substantial changes to the
- 1331 IU's operations or system which might alter the nature, quality, or volume of its
- 1332 wastewater.
- 1333 B. SIUs are required to notify the Director immediately of any changes at its facility
- affecting the potential for a slug discharge.
- 1335 14.10.360 Accidental Discharge and Slug Control Plan

- 1336 A. Each IU shall provide protection from accidental discharge of prohibited materials or
- other wastes regulated by this Chapter. Facilities shall be provided to prevent accidental
- discharges of prohibited materials and shall be maintained at the IU's expense. Detailed
- 1339 plans showing facilities and operating procedures to provide this protection shall be
- submitted by the IU when requested, to the City for the City's review, and shall be
- approved by the Director before construction of the facility. Review and approval of such
- plans and operating procedures shall not relieve the IU from the responsibility to modify its
- facility as necessary to meet the requirements of this Chapter or of any other applicable
- rule, regulation, order or ordinance of a governmental authority.
- B. Any direct or indirect connection to the IU's plumbing or drainage system that allows
- the discharge of wastes to the public sewer system in violation of this Chapter, shall be
- eliminated. Where such action is impractical or unreasonable, as determined by the City,
- the IU shall appropriately label such entry points to warn against discharge of such
- 1349 wastes.
- 1350 C. The Director shall evaluate whether each IU needs an accidental discharge/slug
- discharge control plan or other action to control slug discharges. The Director may require
- any IU to develop, submit for approval, and implement such a plan or to take such other
- action necessary to control slug discharges. Alternatively, the Director may develop such
- a plan for any IU. An accidental discharge/slug discharge control plan shall address, at
- minimum, the following:
- 1. Description of discharge practices, including nonroutine batch discharges;
- 1357 2. Description of stored chemicals;
- 1358 3. Procedures to immediately notify the Director of any accidental or slug discharge;
- 1359 4. Procedures to prevent adverse impact from any accidental or slug discharge. Such
- procedures include, but are not limited to, inspection and maintenance of storage areas,
- handling and transfer of materials, loading and unloading operations, control of plant site
- runoff, worker training, building of containment structures or equipment, measures for
- 1363 containing toxic organic pollutants, including solvents, and/or measures and equipment for
- 1364 emergency response.
- D. In the case of any discharge, including, but not limited to, accidental discharges,
- discharges of a nonroutine, episodic nature, a noncustomary batch discharge, a slug
- discharge or slug load, that might cause potential problems for the POTW, the IU shall
- 1368 immediately telephone and notify the Director of the incident. This notification shall
- include the location of the discharge, type of waste, concentration and volume, if known,
- and corrective action taken by the IU.
- 1371 E. Within five (5) days following such discharge, the IU shall submit a detailed written
- report to the Director describing the cause(s) of the discharge and the measures to be

1373	taken by the IU to prevent similar future occurrences. Such notification shall not relieve
1374	the IU of any expense, loss, damage, or other liability which might be incurred as a result
1375	of damage to the POTW, natural resources, or any other damage to person or property;
1376	nor shall such notification relieve the IU of any fines, penalties, or other liability which may
1377	be imposed pursuant to this Chapter.
1378	F. A notice shall be permanently posted on the IU's bulletin board or other prominent
1379	place advising employees who could cause such a discharge to occur, of the emergency
1380	notification procedure.
1381	14.10.370 Representative Wastewater Samples
1382	All wastewater samples must be representative of the IU's discharge. Wastewater
1383	monitoring and flow measurement facilities shall be properly operated, kept clean, and
1384	maintained in good working order at all times. The failure of an IU to keep its monitoring
1385	facility in good working order shall not be grounds for the IU to claim that sample results
1386	are unrepresentative of its discharge.
1387	14.10.380 Analytical Requirements
1388	All pollutant analyses, including sampling techniques, to be submitted as part of a
1389	wastewater discharge permit application or report shall be performed in accordance with
1390	the techniques prescribed in 40 CFR Part 136 and amendments thereto, unless otherwise
1391	specified in an applicable Categorical Pretreatment Standard. If 40 CFR Part 136 does
1392	not contain sampling or analytical techniques for the pollutant in question, or where the
1393	EPA determines that the Part 136 sampling and analytical techniques are inappropriate for
1394	the pollutant in question, sampling and analyses shall be performed by using validated
1395	analytical methods or any other applicable sampling and analytical procedures, including
1396	procedures suggested by the Director or other parties approved by the EPA.
1397	14.10.390 Sample Collection
1398	A. Samples collected to satisfy reporting requirements must be based on data obtained
1399	through appropriate sampling and analyses performed during the period covered by the
1400	report and be representative of conditions occurring during the reporting period.
1401	B. Except as indicated in subsections C and D below, the IU must collect wastewater
1402	samples using twenty-four (24) hour flow proportional composite sampling techniques,
1403	unless time proportional composite sampling or grab sampling is authorized by the
1404	Director. Where time proportional composite sampling or grab sampling is authorized by
1405	the Director, the samples must be representative of the discharge. Using protocols
1406	(including appropriate preservation) specified in 40 CFR Part 136 and appropriate EPA
1407	guidance, multiple grab samples collected during a twenty-four (24) hour period may be

1408	composited prior to the analysis as follows: for cyanide, total phenols, and sulfides the
1409	samples may be composited in the laboratory or in the field; for volatile organics and oil
1410	and grease, the samples may be composited in the laboratory. Composite samples for
1411	other parameters unaffected by the compositing procedures as documented in approved
1412	EPA methodologies may be authorized by the City, as appropriate. In addition, grab
1413	samples may be required to show compliance with Instantaneous Limits.
1414	C. Samples for oil and grease, temperature, pH, cyanide, total phenols, sulfides, and
1415	volatile organic compounds must be obtained using grab collection techniques.
1416	D. For sampling required in support of baseline monitoring reports and 90-day compliance
1417	reports pursuant to Sections 14.10.310 and 14.10.330 [40 CFR 403.12(b) and (d)], a
1418	minimum of four (4) grab samples must be used for pH, cyanide, total phenols, oil and
1419	grease, sulfide and volatile organic compounds for facilities for which historical sampling
1420	data do not exist; for facilities for which historical sampling data are available, the Director
1421	may authorize a lower minimum. For the reports required by Section 14.10.340 (40 CFR
1422	403.12(e) and 403.12(h)), the IU is required to collect the number of grab samples
1423	necessary to assess and assure compliance with applicable Pretreatment Standards and
1424	Requirements.
1425	E. If an IU subject to the reporting requirement in this section monitors any regulated
1426	pollutant at the appropriate sampling location more frequently than required by the
1427	Director, using the procedures set forth in Section 14.10.380, the results of this monitoring
1428	shall be included in the report.
1429	F. All required sampling shall be done at the IU's expense.
1430	14.10.400 Notice of Violation/Repeat Sampling and Reporting
1431	If sampling performed by an IU indicates a violation, the IU must notify the Director within
1432	twenty four (24) hours of becoming aware of the violation. The IU shall also repeat the
1433	sampling and analysis and submit the results of the repeat analysis to the City within thirty
1434	(30) days of becoming aware of the violation. Where the City has performed the sampling
1435	and analysis in lieu of the IU, the City must perform the repeat sampling and analysis
1436	unless it notifies the IU of the violation and requires the IU to perform the repeat analysis.
1437	Resampling is not required if:
1438	1. The City performs sampling for the IU at a frequency of at least once per month, or
1439	2. The City performs sampling for the IU between the time the initial sampling was
1440	conducted and the time the IU or the City receives the results of this sampling.

14.10.410 Date of Receipt of Reports

1441

1442 Written reports will be deemed to have been submitted on the date postmarked. For 1443 reports that are not mailed, postage prepaid, from a mail facility serviced by the United 1444 States Postal Service, the date of receipt of the report shall govern. 1445 14.10.420 Recordkeeping 1446 Any IUs subject to the reporting requirements of this Chapter shall retain, and make 1447 available for inspection and copying, all records of information obtained pursuant to any 1448 monitoring activities required by this Chapter, any additional records of information 1449 obtained pursuant to monitoring activities undertaken by the IU independent of such 1450 requirements, and documentation associated with Best Management Practices 1451 established under Section 14.10.060(C). Records shall include the date, exact place, 1452 method, time of sampling, the name(s) of the person(s) taking the samples; the dates 1453 analyses were performed; who performed the analyses; the analytical techniques or 1454 methods used; and the results of such analyses. These records shall remain available for 1455 a period of at least three (3) years or during the pendency of any litigation. 1456 14.10.430 Certification Statements 1457 A. Certification of Permit Applications, User Reports and Initial Monitoring Waiver —The 1458 following certification statement is required to be signed and submitted by IUs submitting baseline 1459 monitoring reports pursuant to Section 14.10.310, SIUs submitting reports in compliance with the 1460 categorical Pretreatment Standard deadlines pursuant to Section 14.10.330, IUs submitting 1461 periodic compliance reports required by Section 14.10.340(A-C), and IUs submitting an initial 1462 request to forego sampling of a pollutant on the basis of Section 14.10.340(B). The following 1463 certification statement must be signed by an Authorized Representative as defined in Section 1464 14.08.040, definitions: 1465 I certify under penalty of law that this document and all attachments were prepared under my 1466 direction or supervision in accordance with a system designed to assure that qualified 1467 personnel properly gather and evaluate the information submitted. Based on my inquiry of 1468 the person or persons who manage the system, or those persons directly responsible for 1469 gathering the information, the information submitted is, to the best of my knowledge and 1470 belief, true, accurate, and complete. I am aware that there are significant penalties for 1471 submitting false information, including the possibility of fine and imprisonment for knowing 1472 violations. 1473 B. Annual Certification for Non-Significant Categorical Industrial Users. A facility determined by 1474 the Director to be a Non-Significant Categorical Industrial User pursuant to the definition of 1475 Significant Industrial User in Section 14.08.040 [40 CFR 403.3(v)(2)] must annually submit the

1476	following certification statement signed in accordance with the signatory requirements in Section
1477	14.08.040:
1478	Based on my inquiry of the person or persons directly responsible for managing
1479	compliance with the Categorical Pretreatment Standards under 40 CFR, I
1480	certify that, to the best of my knowledge and belief that during the period from
1481	,to,[months, days, year]:
1482	(a) The facility described as[facility name] met the
1483	definition of a Non-Significant Categorical Industrial User as defined in Section
1484	14.08.040 [40 CFR 403.3(v)(2)];
1485	(b) The facility complied with all applicable Pretreatment Standards and requirements
1486	during this reporting period; and
1487	(c) The facility never discharged more than 100 gallons of total categorical
1488	wastewater on any given day during this reporting period.
1489	This compliance certification is based on the following information:
1490 1491	
1491	
1493	
1494	
1495	C. Certification of Pollutants Not Present. IUs that have an approved monitoring waiver based
1496	on Section 14.10.340(B) must certify on each report, with the following statement, that there has
1497	been no increase in the pollutant in its wastestream due to activities of the IU [40 CFR
1498	403.12(e)(2)(v)]:
1499	
1500	Based on my inquiry of the person or persons directly responsible for managing compliance
1501	with the Pretreatment Standard for 40 CFR [specify applicable National
1502	Pretreatment Standard part(s)], I certify that, to the best of my knowledge and belief, there
1503	has been no increase in the level of [list pollutant(s)] in the wastewaters due to the
1504	activities at the facility since filing of the last periodic report under Section 14.10.340(B).
1505	14.10.440 Confidential Information
1506	All information and data on an IU obtained from reports, questionnaires, permit applications,
1507	permits, monitoring programs, and inspections shall be available to the public or other
1508	governmental agencies, unless the IU specifically requests, and is able to demonstrate to the
1509	satisfaction of the Director, that the release of such information would divulge information,
1510	processes, or methods of production entitled to protection as trade secrets under applicable State
1511	law. Any such request must be asserted at the time of submission of the information or data.
1512	When requested and demonstrated by the IU furnishing a report that such information should be

held confidential, the portions of the report which might disclose trade secrets or secret processes shall not be made available for inspection by the public, but shall be made available immediately upon request to governmental agencies for uses related to the NPDES program or pretreatment program, and in enforcement proceedings involving the person furnishing the report. Wastewater constituents and characteristics and other effluent data, as defined in 40 CFR 2.302 shall not be recognized as confidential information and shall be available to the public without restriction. Information accepted by the City as confidential in accordance with the provisions of 40 CFR Part 2, entitled "Confidentiality of Business Information," shall not be transmitted to the general public by the City until and unless prior and adequate notification is given to the IU. Governmental agencies such as the EPA and the state shall have immediate access to all information collected by the City under its source control program.

Article VIII-Public Participation

14.10.450 Publication of Industrial Users in Significant Noncompliance

- A. The Director shall publish annually, in a newspaper of general circulation that provides meaningful public notice within the jurisdictions served by the POTW, a list of the IUs which, at any time during the previous twelve (12) months, were in Significant Noncompliance with applicable Pretreatment Standards and Requirements. The term Significant Noncompliance shall be applicable to all SIUs (or any other IU that violates paragraphs (3), (4) or (8) of this section) and shall mean:
- 1. Chronic violations of wastewater discharge limits, defined here as those in which sixty-six percent (66%) or more of all the measurements taken for the same pollutant parameter taken during a six (6) month period exceed (by any magnitude) a numeric Pretreatment Standard or Requirement, including instantaneous limits as defined in Sections 14.10.040 14.10.060;
- 2. Technical Review Criteria (TRC) violations, defined here as those in which thirty-three percent (33%) or more of wastewater measurements taken for each pollutant parameter during a six (6) month period equals or exceeds the product of the numeric Pretreatment Standard or
- Requirement including instantaneous limits, as defined by Sections 14.10.040 14.10.060 multiplied by the applicable criteria (1.4 for BOD, TSS, fats, oils and grease, and 1.2 for all other pollutants except pH):

1547	4. Any discharge of a pollutant that has caused imminent danger to the public or to the
1548	environment, or has resulted in the Director's exercise of its emergency authority to halt or
1549	prevent such a discharge;
1550	5. Failure to meet, within ninety (90) days of the scheduled date, a compliance schedule
1551	milestone contained in a wastewater discharge permit or enforcement order for commencing
1552	construction, completing construction, or attaining final compliance;
1553	6. Failure to provide within forty-five (45) days after the due date, any required reports, including
1554	baseline monitoring reports, reports on compliance with Categorical Pretreatment Standard
1555	deadlines, periodic self-monitoring reports, and reports on compliance with compliance
1556	schedules;
1557	7. Failure to accurately report noncompliance; or
1558	8. Any other violation(s), which may include a violation of Best Management Practices,
1559	that the Director determines will adversely affect the operation or implementation of the
1560	local pretreatment program.
1561	Article IX- Fees, Rates and Charges
1562	14.10.460 Pretreatment Charges and Fees
1563	The City may adopt fees for the reimbursement of costs for setting up and operating the
1564	City's pretreatment program. Said fees shall be set by resolution, subject to review by the
1565	City Council and will be reviewed periodically to ensure that the fees charged reasonably
1566	cover the associated costs. Said fees may include the following:
1567	1. Fees for wastewater discharge permit applications, including the cost of processing
1568	such applications.
1569	2. Fees for monitoring, inspection, and surveillance procedures, including the cost of
1570	collecting and analyzing an IU's discharge, and reviewing monitoring reports submitted by
1571	IUs.
1572	Fees for reviewing and responding to accidental discharge procedures and
1573	construction.
1574	4. Fees for filing for a show of cause hearing or appeals.
1575	14.10.470 Industrial User Classification
1576	All IUs shall be classified by assigning each one to a user classification category,
1577	according to the principal activity conducted on the IU's premises. The purpose of such
1578	classification is to facilitate the regulation of wastewater discharges based on wastewater
1579	constituents and characteristics to provide an effective means of source control, and to
1580	establish a system of IU charges and IU wastewater permit fees which will ensure an

1581	equitable recovery of the City's cost for operation of the pretreatment program. The User
1582	classifications are as follows:
1583	1. Class I, not defined as a SIU that may discharge animal and vegetable-based oil and
1584	grease or other conventional pollutants to the POTW.
1585	2. Class II, not defined as a SIU, that has materials and/or wastes on site that if
1586	discharged to the sewer has the potential to impact the POTW. These materials and
1587	wastes include, but are not limited to, those in Sections 14.10.040 and 14.10.060.
1588	3. Class III, an IU defined as a SIU in Section 14.08.040.
1589	Article X-Liability and Enforcement
1590	14.10.480 Liability
1591	A. Liability. The City and its officers, agents and employees shall not be liable for any
1592	injury or death to any person, or damage to any property during, or growing out of, the
1593	performance of any work by any such applicant or agent of applicant. The applicant shall
1594	be liable for, and shall hold the City and its officers, agents and employees harmless from
1595	any liability imposed by law upon the City or its officers, agents or employees, including all
1596	costs, expenses, fees and interest incurred in defending the same or in seeking to enforce
1597	this provision. Applicant shall be solely liable for any defects in the performance of
1598	applicant's work or for any failure that may result from the performance of such work.
1599	B. Liability for Violation. Any person violating any of the provisions of this Chapter shall be
1600	liable to the City for any expense, loss or damage occasioned by reason of such violation.
1601	14.10.490 Public Nuisances
1602	Any violation of the provisions of this Chapter or of any order of the City Council, continued
1603	habitation of any building or continued operation of any industrial facility in violation of the
1604	provisions of this Chapter or of any other rule or regulation of the City, shall be considered a
1605	public nuisance and shall be corrected or abated as directed by the Director. Any person creating
1606	a public nuisance may be charged with a misdemeanor and the Director may refer the matter to
1607	the City Attorney for prosecution and such person shall be responsible for reimbursing the City for
1608	any costs incurred in removing, abating, or remedying said nuisance.
1609	14.10.500 Violations
1610	A. It shall be unlawful for any User or person to violate any provision of this Chapter, and
1611	the orders, rules, regulations and permits issued under this Chapter. Each day in which a
1612	violation occurs or continues shall be deemed a separate and distinct offense.
1613	B. All persons shall be held strictly liable for any and all acts of their agents or employees
1614	under the provisions of this Chapter or any other rule or regulation of the City. Upon being

or of
ught
ion
r
ent,
at
t
s the
of
_
r .ala
ude
of
ater
ated
ain
and
ne
or a

1649	Pretreatment Standard or Requirement, nor does a compliance order relieve the User of
1650	liability for any violation, including any continuing violation.
1651	14.10.540 Cease and Desist Orders
1652	When the Director finds that a User has violated, or continues to violate, any provision of
1653	this Chapter, a wastewater discharge permit, or order issued hereunder, or any other
1654	Pretreatment Standard or Requirement, or that the User's past violations are likely to
1655	recur, the Director may issue an order to the User directing it to cease and desist all such
1656	violations and directing the User to:
1657	Immediately comply with all requirements; and
1658	2. Take such appropriate remedial or preventative action as may be needed to properly
1659	address a continuing or threatened violation, including halting operations and/or
1660	terminating the discharge.
1661	14.10.550 Permit Revocation
1662	Subject to the provisions of this Chapter regarding Notice of Violation and right to appeal,
1663	the Director may revoke any wastewater discharge permit pursuant to Section 14.10.280,
1664	or cause water service to be terminated to any premises if a violation of this Chapter or a
1665	wastewater discharge permit is found to exist, or if a discharge of wastewater causes or
1666	threatens to cause a condition of contamination, pollution or nuisance as defined in this
1667	Chapter, or for any condition that presents an imminent danger to the environment or to
1668	the health or welfare of persons, or that threatens to interfere with the operation of the
1669	POTW, or that violates applicable federal or state regulations. This provision is in addition
1670	to other statutes, rules or regulations authorizing termination of service for delinquency in
1671	payment.
1672	14.10.560 Authority to Disconnect
1673	Whenever a User or IU has violated or continues to violate any provision of this Chapter, a
1674	wastewater discharge permit, or order issued hereunder, or any other pretreatment
1675	standard or requirement, water service to the User may be disconnected. When service
1676	has been disconnected as provided, the cost or estimated cost of disconnection and
1677	reconnection to the system shall be deposited by the User with the City before such User
1678	is reconnected to the system. The City shall refund any part of the deposit remaining after
1679	payment of all costs of disconnection and reconnection.
1680	14.10.570 Civil Penalties
1681	A. Any User or IU who has violated, or continues to violate, any provision of this Chapter,
1682	a wastewater discharge permit, or order issued hereunder, or any other Pretreatment

- Standard or Requirement shall be liable to the City for a maximum civil penalty of
- \$25,000.00 but not less than \$1,000.00 per violation, per day. In the case of a monthly or
- other long-term average discharge limit, penalties shall accrue for each day during the
- period of the violation.
- B. The City may recover reasonable attorneys' fees, fees, court costs, and other
- 1688 expenses associated with enforcement activities, including sampling and monitoring
- expenses, and the cost of any actual damages incurred by the City.
- **1690 14.10.580** Criminal Penalties
- 1691 A. A User or IU who willfully or negligently violates any provision of this Chapter, a
- wastewater discharge permit, or order issued hereunder, or any other pretreatment
- standard or requirement shall, upon conviction, be guilty of a misdemeanor, punishable by
- a fine not to exceed \$1,000.00 per violation, per day, or imprisonment for not more than
- 1695 one (1) year, or both.
- B. A User or IU who knowingly makes any false statements, representations, or
- certifications in any application, record, report, plan, or other documentation filed, or
- required to be maintained, pursuant to this Chapter, wastewater discharge permit or order
- issued hereunder, or who falsifies, tampers with, or knowingly renders inaccurate any
- monitoring device or method required under this Chapter shall, upon conviction, be
- punished by a fine not to exceed \$1,000.00 per violation, per day, or imprisonment for not
- more than one (1) year or both.
- 1703 C. In the event of a second conviction the User or IU shall be punished by a fine not to
- exceed \$3,000 per violation, per day.
- 1705 **14.10.590 Injunction**
- 1706 Whenever a discharge of wastewater violates this Chapter, causes or threatens to cause a
- 1707 condition of contamination, pollution or nuisance, or in the case of nondischarge violations
- 1708 or other such noncompliance with the rules and regulations set forth herein, the City
- Attorney, upon request of the Director, may petition the superior court for a restraining
- 1710 order or a preliminary or permanent injunction, or any or all of these, as may be
- 1711 appropriate.
- 1712 14.10.600 Show of Cause Hearing
- 1713 A. Any User that is subject to a proposed enforcement action may request a hearing, in
- 1714 writing, within ten (10) days of receiving notification of such proposed enforcement action.
- 1715 B. A notice shall be served on the User or IU specifying the time and place of the hearing,
- 1716 the proposed enforcement action, the reason why the proposed action is to be taken, and
- directing the User or IU to show cause why the proposed enforcement action should not

- be taken. The notice of the hearing shall be served personally or by registered or certified
- mail, return receipt requested. The notice shall be served at least ten (10) days before the
- hearing. Service may be made on any agent or officer of a corporation.
- 1721 C. The Director, or his or her assignee, may conduct the hearing and take the evidence
- 1722 to:
- 1723 1. Issue, in the name of the City, notices of hearings requesting the attendance and
- testimony of witnesses and the production of evidence relevant to any matter involved in
- 1725 such hearings;
- 1726 2. Take the evidence;
- 1727 3. Prepare a written report of the evidence and hearing; and
- 1728 4. Determine if there is good cause for the enforcement action.
- D. At any hearing held pursuant to this Chapter, testimony taken must be under oath and
- 1730 recorded stenographically. The recorded transcript will be made available to any member
- of the public or to any party to the hearing upon payment of the usual charges.

1732 **14.10.610** Appeal Hearing

- 1733 A. Any User, IU, permit applicant, or permittee affected by any decision, action or
- determination, taken or issued by the Director, may file with the City Manager a written
- request for an appeal hearing. The request must be received by the City within fifteen (15)
- 1736 calendar days of such decision, action, or determination of the City to the appellant. The
- 1737 request for hearing shall set forth in detail all the facts supporting the appellant's request.
- 1738 B. The City Manager shall within fifteen (15) days of receiving the request for appeal
- designate an impartial hearing officer to hear the appeal and provide written notice to the
- 1740 appellant of the hearing date, time and place. Employees of the City shall not be eligible
- to serve as the hearing officer.
- 1742 C. The City Manager shall set the time and place for hearing the appeal, and a notice of
- the time and place of the hearing shall be published in a newspaper of general circulation
- in the City, and notice shall also be given to the appellant by mailing, postage prepaid, at
- 1745 the address provided by the appellant in the letter of appeal at least ten (10) working days
- before the hearing date.
- 1747 D. The hearing date shall not be more than thirty (30) days from the mailing of such notice
- 1748 by certified mail to the appellant unless a later date is agreed to by the appellant. If the
- hearing is not held within said time due to actions or inactions of the appellant, then the
- 1750 Director's decision shall be deemed final.
- 1751 E. The scope of the hearing shall be limited to the technical evidence regarding the
- alleged violation(s) and proposed enforcement action(s). The hearing officer shall have no
- authority to waive any requirement of the Municipal Code.

- 1754 F. At the hearing the appellant shall have the opportunity to present information 1755 supporting its position concerning the Director's decision, action or determination. 1756 G. After the conclusion of the hearing, the hearing officer shall submit a written report to 1757 the City Manager setting forth a brief statement of facts found to be true, a determination 1758 of the issues presented, conclusions, and a recommendation whether to uphold, modify or 1759 reverse the Director's original decision, action or determination. Upon receipt of the 1760 written report the City Manager shall make a determination and shall issue a decision and 1761 order within thirty (30) calendar days of the hearing by his designee. The written decision 1762 and order of the City Manager shall be sent by certified mail to the appellant at the 1763 appellant's business address, or to the address of appellant's legal counsel/representative. 1764 H. The decision of the City Manager shall be the final decision, and no action by the City 1765 Council shall be required. 1766 I. A fee, as provided for under this sub-section, shall accompany an application for a 1767 hearing before any hearing date. The purpose of the fee shall be to cover those costs 1768 incurred by the City to provide for the appeals process. Appeal fees shall be set by 1769 resolution, subject to review by the City Council. Appeal fees will be reviewed periodically 1770 to ensure that the fees charged cover the costs associated with the appeals process. 1771 J. If the appellant wishes to have the hearing transcribed, the appellant may request that 1772 a court reporter be present at the hearing. The appellant shall bear all costs and expenses 1773 of the transcription. 1774 14.10.620 Severability 1775 If any section, subsection, sentence, clause or phrase in this Chapter or Chapter 14.08 is 1776 for any reason held to be invalid or unconstitutional by a decision of any court of 1777 competent jurisdiction, such decision shall not affect the validity of the remaining portions
- 1778 of these chapters. The City Council hereby declares that it would have passed the 1779 ordinance codified in this Chapter and Chapter 14.08, and each and every section,
- 1780 subsection, sentence, clause or phrase not declared invalid or unconstitutional without
- 1781 regard to whether any portion of this Chapter or Chapter 14.08 would be subsequently
- 1782 declared invalid or unconstitutional.

Technical Basis for Local Wastewater Limits City of El Paso de Robles

June 2009

Prepared by City of El Paso de Robles Public Works Department

With assistance from Cornerstone Engineering, Inc.

Table of Contents

Introduction	1
Existing Local Limits and Evaluation Methodology	
Pollutants of Concern	2
Data Collection and Analysis	4
Calculating Local Limits	
Addressing Collection System Concerns	
Other Practical Considerations	
Summary of Proposed Local Limits	13
Tables Table 1 Existing Local Limits	2
Table 2 Pollutants of Concern and Driving FactorS for Inclusion	3
Table 3 Influent Pollutant Loadings	5
Table 4 Paso Robles WWTP Removal Efficiency	7
Table 5 Environmental Criteria and Maximum Allowable Headworks Loading	8
Table 6 Maximum Allowable Industrial Loads and Resulting Local Limits	g
Table 7 Proposed Local Limits	

Appendices

Appendix A, Summary of Local Limits Sampling Appendix B, Calculation Spreadsheets

INTRODUCTION

Federal water quality regulations require local governments to prevent the introduction of certain pollutants into their Publicly Owned Treatment Works (POTW), in order to prevent interference with wastewater treatment processes and pass through of pollutants, and provide for the use and disposal of municipal biosolids (sludge).

This is accomplished through development and implementation of specific effluent limits for industrial users called local limits. These limits are developed to reflect the specific needs and capabilities at individual POTWs and protect the waterbody to which the POTW discharges. The Paso Robles Wastewater Treatment Plant (WWTP) is a POTW that discharges to the Salinas River, an important regional water supply and wildlife habitat. The City of Paso Robles (hereafter "City") is developing a Source Control Program to reduce the amount of several pollutants in its discharge, especially salts such as sodium, sulfate, chloride, and Total Dissolved Solids (TDS). This program is required by the City's National Pollutant Discharge Elimination System (NPDES) permit. Furthermore, the U.S. Environmental Protection Agency (EPA) recommends POTW's review the adequacy of local limits if NPDES permit requirements or the receiving water quality objectives change. On May 14, 2009, effluent limits in the City's NPDES permit became more stringent for several toxic chemicals, including copper and selenium. The source of these chemicals must be controlled in order for the City to consistently meet these limits.

EXISTING LOCAL LIMITS AND EVALUATION METHODOLOGY

The City's existing local limits are summarized in Table 1 below. The City evaluated the existing local limits to determine if they are still protective of the POTW or need to be modified. The City used the Maximum Allowable Headworks Loading (MAHL) calculation methodology described in EPA's 2004 *Local Limits Development Guidance* to not only evaluate the existing limits, but to also establish its revised local limits.

The MAHL methodology includes four basic steps:

- 1. Determine the Pollutants of Concern (POC):
- 2. Collect and analyze data;
- 3. Calculate MAHLs for each POC;
- 4. Designate and implement the local limits.

After completing the MAHL methodology, local limits may be adjusted to address collection system concerns and practical considerations. This report describes this evaluation process and the City's results.

Table 1: Existing Local Limits

Table 1. Existing Local Ellinics	
Pollutant	Limit (mg/L)
Ammonia (as N)	20.0
Aluminum	8.0
Arsenic	0.30
Beryllium	0.25
Boron	2.50
Cadmium	0.25
Chromium	0.05
Cobalt	0.075
Copper	0.30
Cyanide	0.20
Fluoride	1.50
Iron	7.50
Lead	0.05
Lithium	0.115
Mercury	0.005
Nickel	0.30
Oil and Grease	20
Selenium	0.01
Vanadium	2.00
Zinc	2.00
Surfactants (MBAS)	0.20
Phenol	0.001
Sulfate (as SO ₄)	200.0
Any wastewater, other than water-softening regeneratio	n brine, containing in
excess of:	
Total dissolved solids (TDS)	1000
Sodium	200
Chloride	150
Biochemical oxygen demand (BOD)	250
Total suspended solids (TSS)	250

POLLUTANTS OF CONCERN

A POC is any pollutant that may be discharged to the POTW in sufficient amounts to pass through treatment processes, interfere with treatment processes, jeopardize worker health and safety, or cause operational problems. A POC may also include pollutants in the applicable NPDES permit or biosolids quality regulations.

In order to determine the POCs to be evaluated, the City considered its NPDES permit requirements, biosolids quality regulations, EPA guidance documents, known Industrial Users, sampling and violation history at the WWTP, and current local limits. The City found that 12 pollutants contained in its existing local limits – aluminum, arsenic,¹

¹ Arsenic was not detected in the residential collection system, at the headworks, or in the final effluent all five days of testing. In the commercial collection system it was detected on only one day of testing at 0.008 mg/L which is a very low level. Arsenic was detected in the treatment plant biosolids at a dry weight concentration of 6.56 mg/kg. The EPA 503 regulation limit for "Clean" land application is 41

beryllium,² cobalt, fluoride, iron, lead,³ lithium, mercury,⁴ Methylene Blue Activated Substances, vanadium, and phenol – do not pose a threat to the POTW or the water quality of the receiving waters. Local limits are not required for these 12 pollutants. The City found that molybdenum threatens to exceed biosolids quality criteria, therefore a local limit must be added. The City's POCs, along with applicable listing criteria, are listed in Table 2 below.

Table 2: Pollutants of Concern and Driving Factors for Inclusion

Pollutant of Concern	Treatment process inhibition	Biosolids quality regulations	NPDES permit effluent water quality limit	Potential industrial user discharge
Conventional				
Ammonia (as N)	✓		✓	✓
Biochemical oxygen demand (BOD)			✓	✓
Chloride	✓		✓	
Oil & grease			✓	✓
Sulfate			✓	
Total dissolved solids (TDS)			✓	✓
Total suspended solids (TSS)			✓	
Priority Pollutant Metals & Cyanide				
Cadmium	✓	✓	✓	
Chromium (total) ⁵	✓	✓	✓	✓

mg/kg. The current concentration measured in the biosolids is 6 times lower then the EPA criteria. The City currently has a local limit of 0.3 mg/L for arsenic. Based upon the low levels detected in the collection system and the biosolids and the lack of any detected in the final effluent, there is not a reasonable potential justification for setting a limit on arsenic.

² Beryllium was not detected in any of the samples taken from the collection system, headworks, final effluent or the biosolids.

³ The City detected lead in the collection system, influent and effluent at very low levels. In the biosolids, the lead concentration was 27.2 mg/kg on a dry weight basis. The EPA 503 regulation limit for "Clean" land application is 300 mg/kg. The current concentration measured in the biosolids is 11 times lower than the EPA criteria. The City currently has a local limit of 0.05 mg/L for lead. Based upon the low levels detected throughout the system and in the final effluent, there is not a reasonable potential justification for setting a limit on lead.

⁴ Mercury was measured in the collection system, headworks and effluent at very low levels – less than 0.1 μg/L. In the biosolids, the mercury concentration was 2.87 mg/kg on a dry weight basis. The EPA 503 regulation limit for "Clean" land application is 17 mg/kg. The current concentration measured in the biosolids is 5 times lower than the EPA criteria. The City currently has a local limit of 0.005 mg/L for mercury. Based upon the low levels detected throughout the system and in the final effluent, there is not a reasonable potential justification for setting a limit on mercury.

⁵ Chromium was not detected in the residential collection system or at the headworks. It was detected in the commercial collection system and final effluent at 0.02 mg/L and 0.000142 mg/L respectively, on the last day of testing. In the biosolids, chromium was detected at a dry weight concentration of 52.2 mg/kg. The EPA 503 regulation limit for "Clean" land application is 1,200 mg/kg. The current concentration

Pollutant of Concern	Treatment process inhibition	Biosolids quality regulations	NPDES permit effluent water quality limit	Potential industrial user discharge
Copper	✓	✓	✓	✓
Nickel	✓	✓	✓	✓
Selenium		✓	✓	
Zinc	✓	✓	✓	✓
Cyanide	✓		✓	✓
Other Trace Metals				
Boron			✓	
Molybdenum ⁶		√		
Sodium			√	<u>√</u>

DATA COLLECTION AND ANALYSIS

The City sampled the POCs listed in Table 2 at various collection points in the WWTP and two locations in the collection system, over a period of five consecutive days in October 2008. The City sampled WWTP influent, primary effluent, secondary effluent, and final effluent, in order to determine the treatment plant's removal efficiency for each POC. The City took samples from the collection system at a manhole (CHA10) in the intersection of Holstein Drive and Brahma Street. This portion of the collection system serves a residential neighborhood with no known commercial or industrial waste sources. The City used samples from this location to establish the chemical characteristics of wastewater typical of the City's residential sources (i.e., domestic wastewater). The City also took samples from the wet well of Lift Station 6, located near the Paso Robles Airport, at 3003 Rollie Gates Drive. This portion of collection system serves an industrial area. The City used samples from this location to establish the chemical characteristics of wastewater typical of the City's industrial sources. Appendix A is a tabulated summary of these sampling results.

The City also gathered data regarding total POTW flow, POTW sludge flow to disposal, domestic wastewater flow, and industrial wastewater flow. The City used this data to calculate the load of each POC coming into the WWTP. Table 3 below shows the average WWTP influent concentration and load for each POC. Where a particular

measured in the biosolids is about 23 times lower than the EPA criteria. The City currently has a local limit of 0.05 mg/L for chromium. Although the levels of chromium detected during the sampling were very low, the City feels that a local limit is needed for the protection of the plant, since at least two chrome plating shops are located in the City.

⁶ Molybdenum was not detected in the residential collection system. However, it was detected in the commercial collection system at an average concentration of 0.027 mg/L, in the WWTP headworks at 0.015 mg/L, and in the final effluent at 0.0136 mg/L. In the biosolids, molybdenum was detected at a dry weight concentration of 38.1 mg/kg. The EPA 503 regulation limit for "Clean" land application is 75 mg/kg.

pollutant was not detected (ND), the City estimated the influent load by using one half of that pollutant's detection limit.

Table 3: Influent Pollutant Loadings

Pollutant	Average POTW Influent Concentration (mg/L)	POTW Flow (MGD)	POTW Influent Load (Ibs/day)
Cadmium	ND	3	0.000151
Chromium (total)	ND	3	0.0125
Copper	0.126	3	3.15
Molybdenum	0.0150	3	0.375
Nickel	ND	3	0.0125
Selenium	ND	3	0.0250
Zinc	0.124	3	3.10
Antimony	ND ⁽¹⁾	3	0.0160
Beryllium	ND	3	0.00125
Boron	0.52	3	13.0
Cyanide	0.00228	3	0.057
Sodium	221	3	5,530
Ammonia (as N)	42.3	3	1,060
BOD	302	3	7,560
Chloride	300	3	7,510
TDS	1050	3	26,300
Sulfate (as SO ₄)	145	3	3,630
Oil and Grease	26.6	3	666
TSS	301 (2)	3	7,530

⁽¹⁾ Not detected on 4 of 5 days tested. The other day was near the detection limit.
(2) Monthly average through August 2008

Water Softeners, Salts, and Recycled Water

This study shows the Paso Robles WWTP receives approximately 13,000 pounds of sodium and chloride per day. That's 6.5 tons – equivalent in weight to two full-size pickup trucks! These salts are not removed by conventional wastewater treatment processes, thus pass through the Paso Robles WWTP to the Salinas River. Most of these salts come from widespread use of self-regenerating water softeners (the type to which salt is added).

The City has future plans to recycle its wastewater for landscape and crop irrigation, in order to reduce the City's dependence on groundwater pumped from Salinas River underflow and the Paso Robles Groundwater Basin. However, most plants are sensitive to salt. Sodium inhibits a plant's ability to absorb water through its roots and causes clayey soil to crust over and resist water absorption. In order for the City to produce recycled water that is suitable for irrigation, Paso Robles industrial users and residents must reduce their dependence on self-regenerating water softeners.

If you have a self-regenerating water softener, please ensure the softener is set to regenerate on demand, rather than on a regular interval. Also, consider using potassium chloride tablets instead of sodium chloride tablets to reduce discharge of sodium. If you are replacing your water softener or installing a new one, consider using a canister-type softener service instead of a self-regenerating water softener. These services replace the softening canister on a regular interval, depending on water use. The canisters are taken out-of-town for regeneration, where the salty by-product may be safely discharged into the ocean.

CALCULATING THE MAXIMUM ALLOWABLE HEADWORKS LOADING

The Maximum Allowable Headworks Loading (MAHL) is the estimated maximum loading of a pollutant that can be received by a POTW without inhibiting treatment processes or exceeding all applicable environmental criteria. The City followed these steps to determine the MAHL for each POC:

- 1. Determine the removal efficiencies for each POC,
- Calculate the Allowable Headworks Loading (AHL) for each POC, for all applicable environmental criteria, based on influent flow rates and POC removal efficiencies, and
- 3. Designate the MAHL as the strictest AHL.

The City used spreadsheets developed by U.S. EPA Region 8 to facilitate calculation of AHLs, MAHLs, and the proposed local limits. These spreadsheets are in Appendix B.

First, the City calculated removal efficiency for each POC by comparing average effluent concentration to average influent concentration. Where sample data was not available, the City used removal efficiency values from U.S. EPA literature. In some

cases, effluent concentration exceeded influent concentration, which would suggest a net addition of the pollutant. This is unlikely. After some investigation, City staff found this was due to recirculation of high strength digester supernatant within the WWTP during the sampling period. In this case, the City either assumed zero removal efficiency or used U.S. EPA literature values. Removal efficiencies for each POC are listed in Table 4 below.

Table 4: Paso Robles WWTP Removal Efficiency

Pollutant	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Calculated Removal Efficiency (%)	Removal Efficiency Used for Further Analysis (%)
Boron	0.518	0.550	<0	0
Cadmium	ND	ND ⁽¹⁾	<0	68 ⁽²⁾
Chromium	ND	0.000484	<0	60 ⁽²⁾
Copper	0.126	0.0476	62	62
Molybdenum	0.0150	0.0136	9	9
Nickel	ND	0.00106	<0	41 ⁽²⁾
Selenium	ND	0.00264	<0	52 ⁽²⁾
Sodium	221	214	3	3
Zinc	0.124	0.0457	63	63
BOD	302	4.16	99	99
Chloride	300	304	<0	0 (3)
Solids, Total Dissolved (TDS)	1050	1070	<0	0 (3)
Solids, Total Suspended (TSS)	301	16.5	95	95
Sulfate (as SO ₄)	145	152	<0	0 (3)
Ammonia-N	42.3	18.8	56	56
Cyanide, Total	0.00228	0.00609	<0	0 (5)
Oil and Grease	26.6	5	81	81

For the purpose of this analysis, when a pollutant was not detected, the City used ½ of that pollutant's detection limit.

The environmental criteria the City used to calculate MAHLs are shown in Table 5. NPDES Permit Limits means limits contained in the City's Salinas River discharge permit. Acute Toxicity Criteria mean limits necessary to prevent toxic effects (usually death) to aquatic life in the Salinas River resulting from short term exposure to the City's wastewater discharge. Maximum Contaminant Level means limits necessary to protect the Salinas River as a regional water supply. Chronic Toxicity Criteria mean limits necessary to prevent toxic effects (usually reproductive harm) to aquatic life in the Salinas River resulting from long term effects to the City's wastewater discharge.

⁽²⁾ Value based on U.S. EPA literature.

⁽³⁾ The existing WWTP is not designed to remove any salts (TDS, sodium, chloride, sulfate) from the influent wastestream.

⁽⁴⁾ Influent ammonia is converted to nitrate and nitrite as wastewater moves through the WWTP. The existing WWTP is not designed to remove nitrate and nitrate.

⁽⁵⁾ Cyanide is a disinfection by-product, so there is likely a net increase in cyanide as wastewater passes through the WWTP.

Sludge Criteria mean limits necessary to allow beneficial reuse of the City's sludge (e.g., for land application).

The most stringent applicable criteria for each POC are highlighted with **bold font**. The right-most column in Table 5 is the Maximum Allowable Headworks loading for each POC, based on the most stringent applicable criteria.

Table 5: Environmental Criteria and Maximum Allowable Headworks Loading

	Daily		Monthly				Maximum	
Pollutant	NPDES Permit Limits (mg/L)	Acute Toxicity Criteria (mg/L)	Maximum Contaminant Level (mg/L)	NPDES Permit Limits (mg/L)	Chronic Toxicity Criteria (mg/L)	Human Health Criteria (mg/L)	Sludge Criteria (mg/kg)	Allowable Headworks Loading (lbs/day)
Cadmium		0.020			0.0070		39	0.08
Chromium (total)		5.17			0.6210		1200	2.715
Copper	0.0474	0.049		0.0236	0.0290	1.3	1500	1.563
Molybdenum							75	1.1
Nickel		1.45			0.160	0.61	420	1.39
Selenium	0.0082	0.02		0.0041	0.0046	4.2	100	0.2137
Zinc		0.367			0.368	26	2800	6.019
Boron			0.75 ⁽¹⁾					19
Cyanide	0.0085		0.15	0.0043		0.7		0.1076
Sodium	225							5800
Ammonia (as N)					4.00			225
BOD	50			25				43000
Chloride	310							7760
TDS	1100							27520
Sulfate (as SO ₄)	180							4503
Oil and grease	20			10				1300
TSS	90			30				15000

⁽¹⁾ Limit for protection of irrigation supply.

CALCULATING LOCAL LIMITS

In order to determine the local limits for each pollutant, the City then:

- 1. Reduced the MAHL calculated above by 10% as a factor of safety, per EPA guidance;
- 2. Determined how much loading is attributed to domestic wastewater, using the domestic wastewater flow and quality data described earlier (domestic waste loading is not controlled by the City);
- 3. Subtracted the domestic waste loading from the adjusted MAHL, to determine the Maximum Allowable Industrial Load (MAIL) for each pollutant;
- 4. Allocated the MAIL to all industrial users, using the industrial waste flow data described earlier, to calculate a uniform local limit.

The results are shown in Table 6 below.

Table 6: Maximum Allowable Industrial Loads and Resulting Local Limits

Table 6: Maximul	n Allowable Indi	istriai Loads and	Resulting Local Limits
Pollutant	Maximum Allowable Industrial Load (Ibs/day)	Uniform Local Limit (mg/L)	Notes
Cadmium	0.068	0.10	
Chromium (total)	2.43	3.7	
Copper	Zero discharge	Zero discharge	Zero discharge is not practicable. Copper is prevalent in wastewater due to copper plumbing. See discussion below.
Molybdenum	0.76	1.1	
Nickel	1.24	1.9	
Selenium	0.18	0.27	
Zinc	2.68	4.0	
Boron	3.3	5.0	
Cyanide	0.009	0.01	
Sodium	Zero discharge	Zero discharge	Zero discharge is not practicable. Sodium is prevalent in water supply. See discussion below.
Ammonia (as N)	Zero discharge	Zero discharge	Zero discharge is not practicable. Ammonia is major constituent in domestic wastewater. See discussion below.
BOD	18,100	27,200	This limit would lead to anaerobic conditions in collection system, which would cause severe odor nuisance and corrosion of collection system due to formation of hydrogen sulfide and sulfuric acid. See discussion below.
Chloride	Zero discharge	Zero discharge	Zero discharge is not practicable. Chloride is prevalent in water supply. See discussion below.
TDS	Zero discharge	Zero discharge	Zero discharge is not practicable. TDS is prevalent in water supply. See discussion below.
Sulfate (as SO ₄)	266	399	This limit would lead to corrosion of the collection system due to excessive formation of hydrogen sulfide and sulfuric acid. See discussion below.
Oil and grease	269	405	This limit would lead to collection system obstruction and inhibit treatment processes. See discussion below.
TSS	9,750	14,700	This limit could lead to collection system degradation due to abrasive and erosive contact in collection system. See discussion below.

ADDRESSING COLLECTION SYSTEM CONCERNS

As noted in Table 6, the Maximum Allowable Headworks Loading methodology results in local limits for BOD, sulfate, oil and grease, and TSS that would lead to problems in the City's wastewater collection system or inhibit wastewater treatment processes. Adjustments to local limits for each of these pollutants are discussed here.

Biochemical Oxygen Demand (BOD)

BOD is a measure of the organic strength of wastewater. Excessive BOD causes anaerobic conditions in the collection system, which can cause severe odor nuisance and corrosion of the collection system due to formation of hydrogen sulfide and sulfuric acid. Corrosion has already occurred in portions of the City's collection system due to discharge of high-strength industrial wastewater. To prevent further collection system damage, industrial wastewater BOD must be limited to a level closer to domestic wastewater quality. As shown in Table 3 above, average WWTP influent BOD is currently 302 mg/L. This waste strength is low relative to other cities in California with water conservation programs. The City of Paso Robles now has a water conservation program and expects waste strength may increase up to 20% (i.e., if indoor water use decreases 20%, waste loading will remain the same, so the concentration of BOD will increase 20%). The City therefore recommends a local BOD limit of 360 mg/L.

Sulfate

Sulfate degrades in the anaerobic sections of a collection system to produce hydrogen sulfide. Hydrogen sulfide is not only highly odorous, it is a precursor to sulfuric acid, which corrodes concrete and metal. In order to prevent odor nuisance and damage to the collection system, industrial wastewater discharges should be limited to a sulfate level close to domestic wastewater, plus a reasonable incremental increase, since sulfate is not removed by conventional pre-treatment processes. Average WWTP influent sulfate is currently 145 mg/L (as SO₄) and the City's existing local limit for sulfate is 200 mg/L (as SO₄). Discharges up to 200 mg/L sulfate (as SO₄) should not harm the collection system. The City therefore recommends its existing local sulfate limit of 200 mg/L (as SO₄) remain unchanged.

Oil and Grease

Fats, oils, and greases, which are measured in wastewater as Oil and Grease, accumulate and congeal in the collection system and reduce the capacity of pipes and pumps. This increases the possibility of a sewage spill, reduces treatment efficiency, and increases operation and maintenance costs. Ideally, industrial users would discharge very little or no Oil and Grease to the City's collection system. Zero discharge of Oil and Grease is not practicable however, so the local limit for Oil and Grease must be based on what is achievable with reasonable controls. According to EPA's *Local Limits Development Guidance*, an Oil and Grease limit of 100 mg/L is achievable with the application of best management practices or generally available pretreatment (e.g., grease interceptors). The City therefore recommends its existing oil and grease local limit of 20 mg/L be increased to 100 mg/L.

Total Suspended Solids (TSS)

Suspended solids are abrasive. Excessive suspended solids can corrode pumps and erode the collection system, especially at joints, elbows, and bends. To prevent collection system damage, industrial wastewater TSS must be limited to a level closer to domestic wastewater quality. As shown in Table 3 above, average WWTP influent TSS is currently 301 mg/L. Like BOD, this is low relative to other cities in California with water conservation programs. The City now has a water conservation program and expects waste strength may increase up to 20%. The City therefore recommends a local TSS limit of 360 mg/L.

OTHER PRACTICAL CONSIDERATIONS

As noted in Table 6, the Maximum Allowable Headworks Loading methodology results in local limits of zero for ammonia, chloride, copper, sodium, and total dissolved solids. Limiting these pollutants to zero discharge is not practical because these pollutants are either a normal component of domestic wastewater, prevalent in the City's water supply, or not achievable with reasonable controls. Adjustments to local limits for each of these pollutants are discussed here.

Ammonia

The existing WWTP is overloaded with ammonia, so there is no WWTP capacity for industrial users. The Maximum Allowable Headworks Loading methodology dictates zero discharge of ammonia is necessary for the City to meet its discharge limits. However, ammonia is a normal component of domestic wastewater. Since domestic wastewater is often a major component of industrial wastewater, industrial users cannot be limited to zero discharge of ammonia. Industrial wastewater ammonia should therefore be limited to domestic wastewater quality. During the collection system monitoring described above, the City found average ammonia concentrations of 20 mg/L (as N) in domestic and industrial sections of the City's collection system. The existing local ammonia limit of 20 mg/L (as N) remains unchanged. The City is currently planning to upgrade the WWTP to remove ammonia, which will provide additional ammonia capacity for industrial users.

Chloride

Due to extensive use of self-regenerating water softeners by existing domestic and industrial users, the City occasionally violates its WWTP discharge limit for chloride of 310 mg/L. The Maximum Allowable Headworks Loading methodology justifies zero discharge of chloride. However, zero discharge by industrial users is not practical because chloride is present in the City's water supply at levels ranging up to 150 mg/L. Average chloride in the City water supply is 65 mg/L. In order to prevent further violations of the City's discharge limit, protect Salinas River water quality, and allow for future use of recycled water, the City recommends its existing local chloride limit of 150 mg/L remain unchanged. This may require industrial users to use canister-type softening systems (see sidebar above) instead of self-regenerating softening systems.

_

⁷ As reported in the City's 2008 Annual Water Quality Report

Copper

The existing WWTP is overloaded with copper, so there is no WWTP capacity for industrial users. The Maximum Allowable Headworks Loading methodology dictates zero discharge of copper in order for the City to consistently meet its copper discharge limit. However, zero discharge is not practical because copper is present in a typical building's water supply due to internal corrosion of building plumbing systems. The 90th percentile of copper in tap water samples taken throughout the City in 2008 was 0.31 mg/L. The Maximum Contaminant Level Goal⁸ for copper is 0.3 mg/L. Therefore, the existing local limit of 0.3 mg/L remain unchanged. New industrial users may wish to use non-copper plumbing materials such as cross-linked polyethylene (PEX) to ensure consistent compliance with this limit.

Sodium

Due to extensive use of self-regenerating water softeners, the City often violates its WWTP discharge limit for sodium of 225 mg/L. The Maximum Allowable Headworks Loading methodology justifies zero discharge of sodium by industrial users. However, zero discharge by industrial users is not practical because sodium is present in the City's water supply. In order to prevent further violations of the City's discharge limit, protect Salinas River water quality, and allow for future use of recycled water for irrigation, the existing local sodium limit of 200 mg/L remains unchanged. This may require industrial users to use canister-type softening systems instead of self-regenerating softening systems.

Total Dissolved Solids (TDS)

TDS is a measure of the mineral content of water and includes the components sodium and chloride. Due to extensive use of self-regenerating water softeners, the City is often close to violating its WWTP discharge limit for TDS of 1100 mg/L. The Maximum Allowable Headworks Loading methodology justifies zero discharge of TDS by industrial users. However, zero discharge of TDS by industrial users is not practical because TDS is present in the City's water supply at levels ranging up to 740 mg/L. Average TDS in the City water supply is 518 mg/L.⁹ In order to prevent violations of the City's discharge limit, protect Salinas River water quality, and allow for future use of recycled water for irrigation, the existing local TDS limit of 1,000 mg/L remains unchanged. This may require industrial users to use canister-type softening systems instead of self-regenerating softening systems.

-

⁸ The Maximum Contaminant Level Goal (MCLG) is the level of a contaminant in drinking water below which there is not known or expected risk to health. The MCLGs are set by the U.S. EPA.

⁹ As reported in the City's 2008 Annual Water Quality Report

SUMMARY OF PROPOSED LOCAL LIMITS

The City collected data throughout its wastewater collection system and treatment plant to determine the influent load, relative contributions of domestic and industrial sources. and removal efficiency of all its pollutants of concern. The City found that local limits for 12 pollutants are no longer necessary. Molybdenum is a new pollutant of concern and requires a local limit. The City determined the maximum allowable headworks loading for all pollutants of concern. After accounting for domestic sources, the City allotted this loading to industrial sources to establish uniform local limits. The City then adjusted the uniform local limits for BOD, sulfate, oil and grease, and TSS to protect its collection The maximum allowable headwork loading methodology justified zero system. discharge for ammonia, chloride, copper, sodium, and total dissolved solids. However limiting these pollutants to zero discharge is not practical because these pollutants are either a normal component of domestic wastewater, prevalent in the City's water supply, or not achievable with reasonable controls. So the City adjusted local limits for these pollutants as well. Based on this analysis, the City recommends integration of the following local limits into the City's revised sewer use ordinance. Existing local limits are shown for comparison.

Table 7: Proposed Local Limits

Pollutant	Existing Local Limit (mg/L)	Proposed Local Limit (mg/L)
Ammonia (as N)	20	20
Biochemical Oxygen Demand (BOD)	250	360
Boron	2.5	5.0
Cadmium	0.25	0.10
Chloride	150	150
Chromium (total)	0.05	3.7
Copper	0.3	0.3
Cyanide	0.20	0.01
Molybdenum		1.1
Nickel	0.30	1.9
Oil and grease	20	100
Selenium	0.01	0.27
Sodium	200	200
Sulfate (as SO ₄)	200	200
Total Dissolved Solids (TDS)	1000	1000
Total Suspended Solids (TSS)	250	360
Zinc	2.0	4.0

The City is currently planning to upgrade its wastewater treatment plant by 2014. City staff will reevaluate these local limits when the upgraded treatment plant comes online.

APPENDIX A

Summary of Local Limits Sampling

ALL RESULTS IN MG/L

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

Samples 10/12/08 - 10/17/08

			COLLI	ECTION SYS	COLLECTION SYSTEM-RESIDENTIAL	ENTIAL			
Constituent	Day 0	Day 1	Day 2	<u>ق</u>	Day 3	Day 4	Day 5	Average	Notes
Metals, Total	Field Blank	Composite	Composite	Com	posite	Composite	Composite		
Antimony	Q	0.00116	Q	_	2	Q	ΩN	0.0006;	0.000632 1/2 PQL used for NDs
Arsenic	Q	ΩN	Q	_	ᄝ	ΩN	ΩN	QN QN	
Beryllium	Q	ΩN	Ω	_	ک	ΩN	ΩN	QN QN	
Boron	Q	9.0	0.45	0.	558	0.488	0.683	0.5558	28
Cadmium	2	ΩN	S	_	9	Q	ΩN		
Chromium	g	ΩN	g	_	9	Q	ΩN	Q.	
Copper	0.00135	0.15	0.163	0.	176	0.206	0.165	0.1.	72
Lead	0.000319	0.00133	0.001	0.0	0.000965	0.00161	0.00135	0.0012	0.001251
Manganese	Q	0.0145	0.0146	_	ᄝ	0.0235	0.0135	0.015	22 1/2 PQL used for NDs
Molybdenum	Q	ΩN	Q	_	무	Q	ΩN		
Nickel	Q	ΩN	Q	_	무	ΩN	ΩN	QN QN	
Selenium	g	ΩN	Q	_	9	Q	ΩN	Q	
Silver	2	Ω	Q	_	9	Q	ΩN	Q	
Sodium	2	191	350	N	253	359	248	280.2	vi
Thallium	2	Q	Q	_	9	Q	ΩN	Q	
Zinc	Q	0.116	0.0998	0.0	0752	0.165	0.106	0.1124	24
Wet Chemistry	Field Blank	Composite	Composite	Composite	Lab Duplicate	Composite	Composite		
BOD		640	288	189	182	199	253		8.
Chloride	Q	128	290		320	730	300	415.6	9.
Nitrate Nitrogen	Q	ΩN	Q	ΩN	ΩN		ΩN	ND	
Nitrite Nitrogen	Q	ND	Q	ΩN	ΩN	ΩN	ΩN	ND	
Solids, Total Dissolved	2	800	1520	1090	1110	1800	1090	1260	90
(TDS)								į	(
Solids, Total Suspended (TSS)	2	72	226	53	54	270	150	154.2	7.
Sulfate	QV	171	181	179	174		171	174.6	9:
Metals, Total		Grab	Grab	9	rab	Grab	Grab		
Mercury		0.0000387	0.0000169	0.00	0.0000129	0.	0.0000339	0.00002442	42
Wet Chemistry		Grab	Grab	Grab	Lab Duplicate		Grab		
Ammonia-N		19	28	21	16	21	15.9	20.98	86
Cyanide, Total		ΩN	Q	N			ΩN	ND Q	
MBAS		ΩN	2	ND	Ω	Ω	ND	Q.	
Oil and Grease		70	18	43	23	22	37		38

ALL RESULTS IN MG/L

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Average Composite Composi				COLI	ECTION S	COLLECTION SYSTEM-COMMERCIAL	MERCIAL				
5, Total Field Blank Composite Compo	Constituent	Day 0	Day 1	Day 2		lay 3	Day 4	Day 5	Ave	rage	Notes
only ND 0.00296 0.0022 0.00732 0.00155 0.0038 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0047 0.0039 0.0034 0.0039 0.0047 0.0039 0.0034 0.0039 0.0047 0.0034 0.0039 0.0044 0.0034 <t< td=""><td>Metals, Total</td><td>Field Blank</td><td>Composite</td><td>Composite</td><td>Con</td><td>nposite</td><td>Composite</td><td>Composite</td><td></td><td></td><td></td></t<>	Metals, Total	Field Blank	Composite	Composite	Con	nposite	Composite	Composite			
c ND ND ND ND O008 um ND 0.7 0.8 0.9 0.844 0.86 um ND 0.7 0.8 0.9 0.844 0.86 um ND 0.7 0.8 0.9 0.844 0.86 nium ND 0.14 0.06589 0.00471 0.194 0.0088 0.022 rese ND 0.0087 0.00471 0.0194 0.0088 0.022 rese ND 0.0087 0.00471 0.0194 0.0088 0.015 rese ND 0.0087 0.00471 0.0194 0.0088 0.015 rese ND 0.0087 0.00471 0.0194 0.0088 0.015 renese ND 0.0084 0.0044 0.0194 0.0034 0.015 renese ND ND ND ND ND ND ND renum ND ND ND ND	Antimony	Q	0.00296	0.0022	0.1	00732	0.00155	0.003		0.003406	
um ND ND<	Arsenic	Q.	Ω	Q		N Q	Q	0.008		0.002	1/2 PQL used for NDs
umm ND 0.7 0.8 0.9 0.844 0.86 umm ND ND ND ND ND 0.0008 0.0008 r ND 0.041 0.0852 0.527 0.0898 0.22 r ND 0.041 0.0852 0.527 0.0898 0.022 rese ND 0.0387 0.0444 0.258 0.0739 0.015 nn ND 0.0387 0.0444 0.058 0.0434 0.032 nm ND ND ND ND ND 0.017 nm ND ND ND ND ND 0.004 nm ND ND ND ND ND ND nm ND ND ND ND ND ND nm ND ND ND ND ND ND ND nm ND ND ND ND ND ND N	Beryllium	QN	QN N	Ω		ND	Ω	ΩN	9		
um ND ND ND 0,0008 nim ND ND ND 0,002 0,002 r ND 0,00589 0,00471 0,0194 0,00386 0,0102 r ND 0,00589 0,00471 0,0194 0,00386 0,0102 nnese ND 0,00587 0,0644 0,258 0,00398 0,0162 nnese ND 0,0387 0,0347 ND ND 0,017 nm ND ND ND ND ND 0,004 nm ND ND ND ND ND 0,004 nm ND ND ND ND ND ND nm ND ND ND	Boron	Q	0.7	0.8		6.0	0.844	0.86		0.8208	
tint ND ND ND ND ND ND OO2 OO2 ND OO2 ND ND OO2 ND OO2 ND OO2 ND OO2 ND OO2 ND ND OO2 ND ND OO2 ND ND ND OO3 ND ND OO3 ND ND OO3 ND ND OO3 ND ND ND OO3 ND ND <td>Cadmium</td> <td>QN</td> <td>QN</td> <td>ΩN</td> <td></td> <td>ND</td> <td>ΩN</td> <td>0.0008</td> <td></td> <td>0.00024</td> <td>1/2 PQL used for NDs</td>	Cadmium	QN	QN	ΩN		ND	ΩN	0.0008		0.00024	1/2 PQL used for NDs
r ND 0.141 0.0852 0.527 0.0898 0.22 timese ND 0.00889 0.00471 0.0194 0.00386 0.0102 timese ND 0.0382 0.00474 0.028 0.00799 0.015 denum ND 0.0382 0.0347 0.0844 0.028 0.0179 0.015 um ND ND ND ND ND ND 0.017 um ND ND ND ND ND ND ND n ND ND ND ND ND ND ND Introgen <th< td=""><td>Chromium</td><td>Q</td><td>Q</td><td>Ω</td><td></td><td>Q.</td><td>Ω</td><td>0.02</td><td></td><td>0.0044</td><td>1/2 PQL used for NDs</td></th<>	Chromium	Q	Q	Ω		Q.	Ω	0.02		0.0044	1/2 PQL used for NDs
nnb 0.00589 0.00471 0.0194 0.00386 0.0102 0.015 Januar ND 0.0387 0.0644 0.258 0.0799 0.15 Januar ND 0.0387 0.0347 ND 0.0343 0.035 Januar ND 0.0387 0.0347 ND ND 0.004 Januar ND ND ND ND ND 0.004 Januar ND 0.0307 0.00463 0.00207 0.00112 0.002 Januar ND ND ND ND ND ND ND Januar ND 0.0779 0.362 3.04 0.338 1.58 Ad Januar ND 0.779 0.352 3.04 0.338 1.58 Ad Januar ND ND ND ND ND ND ND ND Januar ND ND ND ND ND ND ND ND	Copper	Q	0.141	0.0852	J).527	0.0898	0.22		0.2126	
nn 0.0987 0.0644 0.258 0.0799 0.15 denum ND 0.0382 0.0347 ND 0.0343 0.035 denum ND ND ND ND ND 0.004 um ND ND ND ND 0.004 n ND 0.00307 0.00463 0.00207 0.00112 0.004 n ND ND ND ND ND ND ND n ND 375 489 436 400 443 ND n ND 0.799 0.352 3.04 0.00112 0.002 0.002 n ND ND ND ND ND ND ND n ND 0.352 3.04 0.0023 0.0022 0.002 477 det ND ND ND ND ND ND ND stead ND ND ND ND	Lead	QN	0.00589	0.00471	0	.0194	0.00386	0.0102		0.008812	
Jennum ND 0.0302 0.0347 ND 0.0332 0.0324 0.0324 0.037 0.037 0.037 0.037 0.037 0.0343 0.032 0.0343 0.037 0.0343 0.037 0.0343 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.004	Manganese	QN	0.0987	0.0644	J).258	0.0799	0.15		0.1302	
um ND ND ND ND ND 0.0077 um ND ND ND ND 0.00463 0.00207 0.00112 0.0094 n ND 0.00307 0.00463 0.00207 0.00112 0.002 443 n ND N	Molybdenum	Q	0.0302	0.0347		ND	0.0343	0.032		0.02724	1/2 PQL used for NDs
um ND ND ND ND 0.00463 0.00207 0.00112 0.002 n ND 0.00307 0.00463 0.00207 0.00112 0.002 n ND 0.779 0.352 3.04 0.338 1.58 hemistry Field Blank Composite AT7 ND	Nickel	Q	QN	Ω		ND	Ω	0.017		0.0038	1/2 PQL used for NDs
n ND 0.00307 0.00463 0.00207 0.00112 0.002 n ND 375 489 436 400 443 n ND ND ND ND ND ND hemistry Field Blank Composite Composit	Selenium	Q	Q	Q		ND	Q	0.004		0.0016	1/2 PQL used for NDs
n ND 375 489 436 400 443 ND ND <th< td=""><td>Silver</td><td>QN</td><td>0.00307</td><td>0.00463</td><td>0.0</td><td>00207</td><td>0.00112</td><td>0.002</td><td></td><td>0.002578</td><td></td></th<>	Silver	QN	0.00307	0.00463	0.0	00207	0.00112	0.002		0.002578	
m ND ND </td <td>Sodium</td> <td>Q</td> <td>375</td> <td>489</td> <td></td> <td>436</td> <td>400</td> <td>443</td> <td></td> <td>428.6</td> <td></td>	Sodium	Q	375	489		436	400	443		428.6	
hemistry Field Blank Composite Com	Thallium	QN		ΩN		ND	ΩN	ΩN	9		
hemistry Field Blank Composite Somposite Sompo	Zinc	ΩN		0.352	•	3.04	0.338	1.58		1.2178	
ND 420 750 370 540 450	Wet Chemistry	Field Blank		Composite	Composite	Lab Duplicate	Composite	Composite			
le ND 420 750 370 370 540 450 ND <	BOD			281	1110	1200	268	477		488.8	
Nitrogen ND <	Chloride	Q	420	750	370	370	540	450		206	
Nitrogen ND <	Nitrate Nitrogen	Q	Q	Q	Q	Q	Q	ΩN	2		
Total Dissolved 36.3 1440 1880 1620 1610 1730 1510 Total Suspended ND 869 261 3020 3070 700 1800 State Suspended ND 118 129 216 217 116 117 State St	Nitrite Nitrogen	Q	QN	Ω	Q	QN	Ω	ΩN	9		
Total Suspended ND 869 261 3020 3070 700 1800 100 100 100 118 129 216 217 116 117 116 117 116 117 119 218 218 217 116 117 117 119 119 218 218 217 116 117 110 117 110 117 110 117 110 110 110	Solids, Total Dissolved	36.3	1440	1880	1620	1610	1730	1510		1636	
ND 118 129 216 217 116 117 Y Grab Con000239 0.0000339 0.00 y Grab Grab Grab Lab Duplicate Grab	Solids, Total Suspended	Q	869	261	3020	3070	700	1800		1330	
Total Grab C0000239 0.0000339 0.00 y Grab Grab Chab Lab Duplicate Grab Grab Grab nia-N 4.8 27 11 ND ND ND e, Total ND ND ND ND ND ND ND ND ND ND ND ND ND 10 12 19 18 10 8	(TSS) Sulfate	S	478	129	216	217	116	117		139.2	
y 0.0000418 0.000139 0.0000478 0.0000239 0.000033 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.0000339 0.000033 0.0000339 0.0000339 0.0000339 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 <t< td=""><td>Metals. Total</td><td>1</td><td>Grab</td><td>Grab</td><td></td><td></td><td>Grab</td><td>Grab</td><td></td><td>! > ></td><td></td></t<>	Metals. Total	1	Grab	Grab			Grab	Grab		! > >	
hemistry Grab Grab Lab Duplicate Grab Grab nia-N 4.8 27 11 ND 31 20.9 e, Total 0.0073 0.0116 ND ND ND ND ND ND ND N	Mercury		0.0000418	0.000139	0.00	000478	0.0000239	0.0000339	0.0	30005728	
inia-N 4.8 27 11 ND 31 20.9 e, Total 0.0073 0.0116 ND	Wet Chemistry		Grab	Grab	Grab	Lab Duplicate	Grab	Grab			
e, Total 0.0073 0.0116 ND	Ammonia-N		4.8	27	7	Q	31	20.9		18.94	
ND	Cyanide, Total		0.0073	0.0116	Q		Q	ΩN		0.00618	1/2 PQL used for NDs
10 10 18 10 8	MBAS		Q	Ω	Ω	Q	Ω	Ω	_		
9 9 9 9	Oil and Grease		10	12	19	18	10	8		11.8	

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

					INFLUENT	F				
Constituent	Day 0	Day 1		Day 2	Day 3	Da	Day 4	Day 5	Average	Notes
Metals, Total		Composite	Composite	Field Duplicate	Composite	Composite 1	Composite Lab Duplicate	Composite		
Antimony		Q Q	Q	R	0.00121	Q		Q	0.000642	0.000642 1/2 PQL used for NDs
Arsenic		Q Q	Q	2	Q	Q		Q	0.00025	0.00025 1/2 PQL used for NDs
Beryllium		Q	Q	P	Q	Ω		Q	0.00005	0.00005 1/2 PQL used for NDs
Boron		0.5	0.543	0.548	0.5	0.528	0.506	0.518	0.5178	
Cadmium		Q	Q	Q	Q	ΩN		Q	0.00005	0.00005 1/2 PQL used for NDs
Chromium		Q.	Q	Q	Q	ΩN		Q	0.00025	0.00025 1/2 PQL used for NDs
Copper		0.119	0.125	0.126	0.136	0.126		0.124	0.126	
Lead		0.00179	0.002	0.00213	0.00232	0.00239		0.00204	0.002108	
Manganese		0.105	0.143	0.146	0.108	0.262	0.261	0.153	0.1542	
Molybdenum		0.0135	0.0156	0.0159	0.0152	0.0149	0.0146	0.0157	0.01498	
Nickel		Q	Q	Q	Ω	ΩN		QN	ND	1/2 PQL used for NDs
Selenium		Q	Q	Ð	Q	QN		Q	ND	1/2 PQL used for NDs
Silver		Q	0.00104	Q	Ω	ΩN		0.00109	0.000726	0.000726 1/2 PQL used for NDs
Sodium		234	217	225	227	211	228	214	220.6	
Thallium		Q	Q	Q	Q	ΩN		Q	0.00005	0.00005 1/2 PQL used for NDs
Zinc		0.119	0.131	0.118	0.13	0.122		0.119	0.1242	
Wet Chemistry	Field Blank	Composite	Composite	Field Duplicate	Composite	Com	Composite	Composite		
BOD		324	319	298	327	2	72	267	301.8	
Chloride	12.8	330	280	280	290	Ö	300	300	300	
Nitrate Nitrogen		Q	Q	2	Q	~	₽	Q	0.05	0.05 1/2 PQL used for NDs
Nitrite Nitrogen		Q	Q	Q	Q	~	₽	Q	90.0	0.05 1/2 PQL used for NDs
Solids, Total Dissolved		1090	1020	1070	1030	10	1060	1050	1050	
(103)		;	ļ		!	•	(!		
Sultate	3.08	141	150	151	147	<u> </u>	140	145	144.6	
Metals, Total		Grab	Grab	Field Duplicate	Grab	9	Grab	Grab		
Mercury		0.0000386	0.0000586	0.0000595	0.0000954	0.00	0106	0.0000587	0.00007146	
Wet Chemistry		Grab	Grab	Field Duplicate	Grab	9	Grab	Grab		
Ammonia-N		36	29	28	53	(*)	31	32.3	42.26	
Cyanide, Total		Q	0.00246	0.00294	S	_	N	Q	0.00228	0.00228 1/2 PQL used for NDs
MBAS		Q Q	2	R	2	_	N		0.025	0.025 1/2 PQL used for NDs
Oil and Grease		24	23	23	34		4	28	26.6	

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

			PRIMA	PRIMARY EFFLUENT	ENT			
Constituent	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5 Average	Average	Notes
Metals, Total	Field Blank	Field Blank Composite	Composite	Composite Cor	Composite Composite	Composite		
Zinc	QN	0.05	0.08	0.07	90.0	0.0816	0.06832	0.06832 1/2 PQL used for NDs
Wet Chemistry		Grab	Grab	Grab	Grab	Grab		
Cyanide, Total		Q	0.00391	Q	Q	0.00294	0.00257	0.00257 1/2 PQL used for NDs

ALL RESULTS IN MG/L

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

Samples 10/12/08 - 10/17/08

				SECONDARY EFFLUENT	RY EFFLU	ENT			
Constituent	Day 0	Day 1	Day 2	Day 3		Day 4	Day 5	Average	Notes
Metals, Total	Field Blank	Composite	Composite	Composite	Composite	Field Duplicate	Composite		
Antimony	Q	0.0014	2		0.00106	ND	ΩN	0.000792	0.000792 1/2 PQL used for NDs
Arsenic	Q	ΩN	2		ΩN	ND	0.00262	0.000724	0.000724 1/2 PQL used for NDs
Beryllium	Q	ΩN	2		ΩN	QN	ΩN	ND	
Boron	Q	0.536	9.0		0.524	0.525	0.502	0.5396	
Cadmium	Q	ΩN	2	QN	ΩN	ND	0.000438	0.0001276	0.0001276 1/2 PQL used for NDs
Chromium	Q	ΩN	2		ΩN	N	0.00143	0.000486	0.000486 1/2 PQL used for NDs
Copper	0.00213	0.0477	0.0502	0.0446	0.044	0.0426	0.0411	0.04552	
Lead	0.000358	0.000679	0.000783	O	0.000753	0.000761	0.000605	0.0007098	
Manganese	Q	0.0236	0.027		0.028	0.0263	0.0231	0.02568	
Molybdenum	Q	0.0131	0.0139		0.0138	0.0136	0.0135	0.01354	
Nickel	Q	ΩN	2		ΩN	QN	ΩN	ND	
Selenium	Q.	ΩN	2		Ω	QN	0.0101	0.00242	0.00242 1/2 PQL used for NDs
Silver	Q	ΩN	2	QN	ΩN	ND	0.000229	0.0004458	0.0004458 1/2 PQL used for NDs
Sodium	2	221	230		214	208	223	220.6	
Thallium	Q	ΩN	2		ΩN	QN	ΩN	ND	1/2 PQL used for NDs
Zinc	0.0168	0.0478	0.0441	0.0455	0.0491	0.0457	0.0453	0.04636	
Metals, Total		Grab	Grab	Grab	Grab	Field Duplicate	Grab		
Mercury		0.0000259	0.0000312	0.0000279	0.0000298	0.0000274	0.0000293	0.00002882	
Wet Chemistry		Grab	Grab	Grab	Grab	Field Duplicate	Grab		
Ammonia-N		21	19		19.9		13.2	20.02	
Cyanide, Total		0.00198	0.0073	QN	ΩN	0.00198	0.00246	0.003935	
MBAS		ND	ND	ND	ND		ND	ND	

ALL RESULTS IN MG/L

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

Play 0					FINAL	FINAL EFFLUENT				
7, Total Field Blank Composite <	Constituent	Day 0	Day 1	Day 2	O	ay 3	Day 4	Day 5	Average	Notes
rny ND	Metals, Total	Field Blank	Composite	Composite		Field Duplicate	Composite	Composite		
ND ND ND ND ND ND ND ND	Antimony	ΩN	Q	<u>R</u>	Q		2	Q	ND	
Imm ND	Arsenic	QN	QN	2	Q		2	0.00284	0.0007	0.000768 1/2 PQL used for NDs
mm ND 0.543 0.586 0.536 0.504 0.552 ND nm ND ND ND ND ND 0.000457 0.00465 0.000473 0.000457 r 0.000108 0.0447 0.0497 0.0465 0.0493 0.0477 0.000458 0.00073 0.00072 0.00077 0.00047 0.00046 0.00047 0.00049 0.00072 0.00077	Beryllium	QN	QN	Q	Q		2	Q	QN	Q
Limm ND ND ND ND ND 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000557 0.000572 0.000727 0.000727 0.000557 0.000557 0.000557 0.000572 0.000727 0.000557 0.000557 0.000727 0.000727 0.000557 0.000727 0.00077 0.000778 0.000778 0.000778 0.000778 0.000778 0.000778 0.0000778 0.000778 0.000778 0.0	Boron	QN	0.543	0.568	0.536	0.504	0.552	Q	0.44	48 1/2 PQL used for NDs
Lium ND ND ND ND 0.00432 0.00442 r 0.00108 0.0447 0.0487 0.0465 0.04973 0.0447 0 r 0.000522 0.000675 0.000851 0.000749 0.00293 0.0047 0 nese ND 0.0127 0.0137 0.0128 0.0259 0.0313 0.0256 nm ND 0.0127 0.0137 0.0128 0.0129 0.0144 0 nm ND ND ND ND ND ND 0.0144 nm ND ND ND ND ND ND 0.0144 nm ND ND ND ND ND ND ND ND nm ND ND ND ND ND ND ND ND ND nemistry Field Blank Composite Composite Composite Composite Composite Composite Composite Composit	Cadmium	QN	QN	P	Q		Q	0.000557	0.00015	0.0001514 1/2 PQL used for NDs
Condition	Chromium	ΩN	Q	Q	Q		Q	0.00142	0.00048	0.000484 1/2 PQL used for NDs
nese ND 0.000252 0.000675 0.000749 0.000793 0.000793 Inna ND 0.0225 0.0266 0.0247 0.0259 0.0313 0.0255 0.000793 Inn ND ND ND ND ND ND 0.0128 0.0129 0.0139 0.0043 0.00136 Inn ND ND ND ND ND ND 0.0043 Inn ND ND ND ND ND ND 0.0046 Inn ND ND ND ND ND ND 0.0046 Inn ND ND ND ND ND 0.0046 0.0046 Inn ND ND ND ND ND ND 0.0046 Inn ND ND ND ND ND ND 0.0046 Inn ND ND ND ND ND 0.0467 0.0516 Introden <t< td=""><td>Copper</td><td>0.00108</td><td>0.0447</td><td>0.0497</td><td>0.0465</td><td></td><td>0.0493</td><td>0.0477</td><td>0.047</td><td>28</td></t<>	Copper	0.00108	0.0447	0.0497	0.0465		0.0493	0.0477	0.047	28
nese ND 0.0226 0.0266 0.0247 0.0259 0.0313 0.0255 0.02612 lenum ND 0.0127 0.0137 0.0128 0.0129 0.0142 0.0145 0.01366 lenum ND ND ND ND ND 0.0129 0.0046 0.00462 len ND ND ND ND ND 0.0046 0.00462 n ND ND ND ND ND 0.00462 0.000462 n ND ND ND ND ND 0.0026 0.000462 n ND ND ND ND 0.0026 0.000462 0.000462 n ND ND ND ND ND 0.0047 0.0016 0.00462 n ND ND ND ND ND ND 0.0445 0.0446 n ND ND ND ND ND ND 0.0456 0.0446<	Lead	0.000252	0.000675	0.000851	0.000749		0.000973	0.000721	0.000793	38
lenum ND 0.0127 0.0137 0.0128 0.0129 0.0142 0.0143 0.01356 Imm ND ND ND ND ND 0.0142 0.0143 0.01356 Imm ND ND ND ND ND 0.00034 0.000364 Imm ND 218 212 212 211 212 213 0.00034 Imm ND ND ND ND ND ND 0.000462 Imm ND 218 212 212 211 212 213 0.00034 0.000264 Imm ND ND ND ND ND ND 0.04456 0.0566 0.0566 0.0566 0.0456 0.0456	Manganese	ΩN	0.0225	0.0266	0.0247	0.0259	0.0313	0.0255	0.026	2
Image: Line of the color of the co	Molybdenum	QN	0.0127	0.0137	0.0128	0.0129	0.0142	0.0144	0.013	26
Imm ND ND ND ND ND 0.0012 Imm ND ND ND ND 0.00031 0.000462 Imm ND 218 212 212 211 212 Imm ND ND ND ND ND ND 0.0454 0.0458 0.0467 0.0516 0.000462 hemistry Field Blank Composite Composite <t< td=""><td>Nickel</td><td>QN</td><td>Q</td><td>Q</td><td>Q</td><td></td><td>2</td><td>0.0043</td><td>0.001</td><td>06 1/2 PQL used for NDs</td></t<>	Nickel	QN	Q	Q	Q		2	0.0043	0.001	06 1/2 PQL used for NDs
n ND ND ND ND ND ND 0.000462 n ND 216 218 212 211 212 213 213 n ND ND ND ND ND ND ND ND 0.0454 0.0454 0.0467 0.056 0.0456 0.0454 0.0467 0.056 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0456 0.0447 0.056 0.0447 0.0456 0.0447 0.0456 0.0447 0.0456 0.0447 0.0446 0.0446 0.0466 0.0444	Selenium	QN	QN	P	Q		Q	0.0112	0.002	1/2
ND 216 218 212 211 212 213	Silver	ΩN	Q	2	Q		2	0.00031	0.0004	32 1/2 PQL used for NDs
mm ND ND<	Sodium	ΩN	216	218	212	212	211	212	213	
hemistry Field Blank Composite Compo	Thallium	ΩN	QN	2	Q		2	Q	ND	
hemistry Field Blank Composite Composite Composite Composite S 5.5 Composite Composite Composite Composite S 3.38 Composite Composite Composite S 3.38 Composite Composite S 3.38 Composite Composite S 3.38 Composite Composite S 3.38 Compos	Zinc	0.0186	0.0388	0.0454	0.0458		0.0467	0.0516	0.0456	36
le 4.7 300 300 303 309 310 Nitrogen ND 9.2 9 10 10.5 12 Nitrogen ND 0.4 ND 0.4 ND 10.5 12 Nitrogen ND 0.4 ND 0.4 ND 0.2 9 10 10.5 12 12 12 12 12 12 12 12 12 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.0	Wet Chemistry	Field Blank	Composite	Composite	Con	nposite	Composite	Composite		
let 4.7 300 300 303 309 310 304.4 Nitrogen ND 9.2 9 10 10.5 12 10.14 Nitrogen ND 0.4 ND 0.0 0.3 0.0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0 0.03 0.0 0.03 0.0 0.03 0.03 0.0 0.03 0.0	BOD		2	5.5		6.1	2	3.38	4.1	4.156 1/2 PQL used for NDs
NItrogen ND 9.2 9 10 10.5 12 10.14 Nitrogen ND 0.4 ND 0.3 0.3 0.8 10.3 0.33 0.0 0.0 0	Chloride	4.7	300	300	.,	303	309	310	304	4.
Nitrogen ND ND 0.4 ND 0.3 0.3 0.8 0.32 Total Dissolved 26.3 1050 1040 1110 1080 1080 1072 1 Cotal Dissolved 26.3 1050 1040 157 151 152 1072 1 Cotal Cotal Grab 18.1 18.2 Nia-N 18 19 21 18 18.1 18.82 Ic, Total ND ND ND ND ND ND ND ICrease 6 6 4 4 4 5 5	Nitrate Nitrogen	ΩN	9.2	6		10	10.5	12	10.	41
Total Dissolved 26.3 1050 1040 1110 1080 1080 ** Total Grab ND A A A A A A A	Nitrite Nitrogen	Q N	QN	0.4		QN QN	0.3	0.8):0	32 1/2 PQL used for NDs
t, Total Grab 0.0000264 0 0 y hemistry Grab Grab <t< td=""><td>Solids, Total Dissolved</td><td>26.3</td><td>1050</td><td>1040</td><td>_</td><td>110</td><td>1080</td><td>1080</td><td>10.</td><td>72</td></t<>	Solids, Total Dissolved	26.3	1050	1040	_	110	1080	1080	10.	72
Crab Grab Grab Grab Grab Grab Grab Grab Grab Grab 0.0000278 0.0000264 0 vemistry Grab Grab Grab Grab Grab Grab Grab nia-N 18 19 21 18 18.1 e, Total 0.00585 0.00536 0.00778 ND ND ND ND ND ND ND ND ND Grease 6 6 4 4 28	Sulfate	1.04	151	157	•	151	151	152	152	4.
y 0.0000025 0.0000282 0.0000343 0.0000278 0.0000264 0 hemistry Grab Grab Grab Grab Grab Grab IS nia-N 18 19 21 18 18.1 le, Total 0.00585 0.00536 0.00536 ND ND ND ND Grease 6 6 6 4 4 28 18	Metals, Total		Grab	Grab		irab	Grab	Grab		
hemistry Grab Grab Grab Grab Grab nia-N 18 19 21 18 18.1 e, Total 0.00585 0.00536 0.00778 ND 0.00536 ND ND ND ND ND ND Grease 6 6 6 4 4 28	Mercury		0.000025	0.0000282		000343	0.0000278	0.0000264	0.0000283	34
Inia-N 18 19 21 18 18.1 le, Total 0.00585 0.00536 0.00778 ND 0.00536 ND ND ND ND ND Grease 6 6 6 4 4 28	Wet Chemistry		Grab	Grab		irab	Grab	Grab		
e, Total 0.00585 0.00536 0.005778 ND 0.00536 ND ND ND ND ND ND Grease 6 6 6 4 4 28	Ammonia-N		18	19		21	18	18.1	18.	32
ND	Cyanide, Total		0.00585	0.00536	0.0	0778	2	0.00536	0.006087	75 1/2 PQL used for NDs
6 6 4 4 28	MBAS		Q	g		Q.	2	2	ND	
07	Oil and Grease		9	9		4	4	28		5 Day 5 is bad data

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

Samples 10/12/08 - 10/17/08

	RAW PRIN	RAW PRIMARY SLUDGE	JGE	
Constituent	Day 1	Day 2	Average	Notes
Metals, Total	Grab	Grab		
Antimony	Ω	ΩN	ΩN	
Arsenic	Ω	ΩN	ΩN	
Beryllium	Ω	ΩN	ΩN	
Cadmium	9.0	0.3	0.45	
Chromium	1.6	~	1.3	
Copper	36.6	30	33.3	
Lead	0.7	0.5	9.0	
Nickel	~	0.7	0.85	
Selenium	~	0.8	0.0	
Silver	Ω	ΩN	QN	
Thallium	Ω	ΩN	QN QN	
Zinc	4	33	37	
Wet Chemistry	Grab	Grab		
Cvanide. Total	Q	QN	QN	

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

		BIO	BIOSOLID		
				Conc. Corrected for	
Constituent	Day 1	Day 2	Average	Moisture	Notes
Metals, Total	Grab	Grab	1		
Antimony	Q	0.515	0.3825	2.24	
Arsenic	Q	1.99	1.12	6.57	
Beryllium	Q	Ω	Q	QN	
Cadmium	က	3.34	3.17	18.59	
Chromium	8.8	8.99	8.895	52.17	
Copper	217	237	227	1331.38	
Lead	4.8	4.47	4.635	27.18	
Manganese	78.7	84	81.35	477.13	
Mercury	0.79	0.19	0.49	2.87	
Molybdenum	6.1	6.88	6.49	38.06	
Nickel	4.5	5.61	5.055	29.65	
Selenium	9	6.84	6.42	37.65	
Silver	2	2.12	2.06	12.08	
Thallium	Q	Ω	Ω	Q.	
Zinc	234	326	280	1642.23	
Wet Chemistry	Grab	Grab			
% Solids	18.9	15.2	17.05		

ALL RESULTS IN MG/L

CITY OF PASO ROBLES
PRETREATMENT
TESTING RESULTS

Samples 10/12/08 - 10/17/08

0.119	0.125	0.136	0.126	0.124	ADRE	0.62437	0.6024	0.658088	0.60873	0.615323	0.621782
0.0447	0.0497	0.0465	0.0493	0.0477	MRE	ave In=	0.126	0.126 ave out =	0.04758		0.622381
0.00179	0.002	0.00232	0.00239	0.00204	ADRE	0.622905	0.5745	0.677155	0.592887	0.646569	0.622803
0.000675	0.000851	0.000749	0.000973	0.000721	MRE	ave In=	0.002108	0.002108 ave out =	0.000794		0.623435
0.0000386	0.0000586	0.0000954	0.000106	0.0000587	ADRE	0.352332	0.518771	0.640461	0.737736	0.550256	0.559911
0.000025	0.0000282	0.0000343	0.0000278	0.0000264	MRE	ave In=	7.15E-05	7.15E-05 ave out =	2.83E-05		0.603414
0.0135	0.0156	0.0152	0.0149	0.0157	ADRE	0.059259	0.121795	0.157895	0.04698	0.082803	0.093746
0.0127	0.0137	0.0128	0.0142	0.0144	MRE	ave In=	0.01498	0.01498 ave out =	0.01356		0.094793
0.119	0.131	0.13	0.122	0.119	ADRE	0.67395	0.653435	0.647692	0.617213	0.566387	0.631735
0.0388	0.0454	0.0458	0.0467	0.0516	MRE	ave In=	0.1242	0.1242 ave out =	0.04566		0.632367
0.5	0.543	0.5	0.528	0.518	ADRE	-0.086	-0.046041	-0.072	-0.045455	#VALUE!	-0.062374
0.543	0.568	0.536	0.552	QN	MRE	ave In=	0.51775	0.51775 ave out =	0.54975		-0.061806
0.105	0.143	0.108	0.262	0.153	ADRE	0.785714	0.813986	0.771296	0.880534	0.833333	0.812883
0.0225	0.0266	0.0247	0.0313	0.0255	MRE	ave In=	0.1545	0.1545 ave out =	0.02612		0.830939
		•									
234	217	227	211	214	ADRE	0.076923	-0.004608	620990'0	0	0.009346	0.034599
216	218	212	211	212	MRE	ave In=	222.25	222.25 ave out =	213.8		0.03802
324	319	327	272	267	ADRE	0.984568	0.982759	0.981346	0.997059	0.987341	0.986433
2	5.5	6.1	0.8	3.38	ARH	ave In=	301.8	301 8 2ve out =	7 156		000000

APPENDIX BCalculations Spreadsheets

TABLE 1 - GENERAL DATA ENTRY

POTW NAME:	City of El Paso Robles WWTP	
POTW HIGHEST MONTHLY AVERAGE FLOW (MGD):		
DOMESTIC FLOW (MGD):	2.64	
SIU FLOW (MGD):	0.08	
COMMERCIAL FLOW (MGD):	0.29	
TRUCKED AND HAULED WASTE FLOW (MGD):	0	
COMMERCIAL FLOW AS A % OF ALL NON-DOMESTIC	78	
TOTAL COMMERCIAL FLOW AS A % OF TOTAL POTW FLOW	10	
TOTAL NON-DOMESTIC FLOW AS A % OF TOTAL POTW FLOW	12	
SPECIFIC GRAVITY OF SLUDGE TO DISPOSAL (kg/l)		Default 1
SLUDGE FLOW TO DISPOSAL (MGD):	0.00775	
% SOLIDS TO DISPOSAL (%)	2.1	
BIOSOLIDS TABLE (1,3 OR "O"THER) BASED ON DISPOSAL OPTION:	m	
ARE YOU USING TABLE 2 FOR BIOSOLIDS (Y/N)?:	C	
SITE AREA (ACRES):		
SITE LIFE (YEARS):		
CHRONIC RECEIVING WATER FLOW (MGD):	0	
ACUTE RECEIVING WATER FLOW (MGD):	0	
HARDNESS FOR METALS CALCULATIONS (MG/L):	375	
IS YOUR RECEIVING WATER A DRINKING WATER SUPPLY (Y/N)?:	>	
APPLICABLE STANDARDS (ACUTE, CHRONIC, BOTH):	В	A,C OR B

Daily
TABLE 2: CRITERIA AND STANDARDS

	Daily Max/7 Day	STATE	EPA ACUTE	FINAL		OTHER CRITERIA	
POLLUTANT		ACUTE WQ STDS MG/L	H2O QUAL CRITERIA MG/L	ACUTE CRITERIA MG/L	MCLs MG/L		POLLUTANT
ARSENIC		0.34	0.34	0.3400	0.01		ARSENIC
CADMIUM		0.02	0.0081	0.0200	0.005		CADMIUM
CHROMIUM - TOTAL		5.17	5.37	5.1700	0.05		CHROMIUM - TOTAL
COPPER	0.0474	0.049	0.0486	0.0490	1.3		COPPER
LEAD		0.44	0.4392	0.4400	0.015		LEAD
MERCURY			0.0014		0.002		MERCURY
MOLYBDENUM							MOLYBDENUM
NICKEL		1.45	1.4354	1.4500	0.1		NICKEL
SELENIUM	0.0082		0.02	0.0200	0.05		SELENIUM
SILVER			0.0368	0.0368	0.1		SILVER
ZINC		0.367	0.3672	0.3670	2		ZINC
ANTIMONY			9.0000	9.0000	900.0		ANTIMONY
BERYLIUM			0.1300	0.1300			BERYLIUM
BORON							BORON
CYANIDE	0.0085				0.15		CYANIDE
MANGANESE					0.2		MANGANESE
SODIUM	225						SODIUM
THALLIUM					0.002		THALLIUM
AMMONIA (AS N)							AMMONIA (AS N)
BOD							ВОВ
CHLORIDE	310						CHLORIDE
NITRATE (AS N)							NITRATE (AS N)
NITIRITE (AS N)							NITIRITE (AS N)
TDS	1100						TDS
SULFATE (AS SO4)	180						SULFATE (AS SO4)
MBAS							MBAS
OIL AND GREASE	20						OIL AND GREASE
TSS	06						TSS

TABLE 3: CRITERIA AND STANDARDS

	Monthly	STATE	EPA CHRONIC	FINAL		STATE	EPA	Final	OTHER CRITERIA	
POLLUTANT	NPDES PERMIT LIMITS MG/L	CHRONIC WQ STDS MG/L	H2O QUAL CRITERIA MG/L	CHRONIC CRITERIA MG/L	POLLUTANT	HUMAN HEALTH CRITERIA MG/L	HUMAN HEALTH CRITERIA MG/L	HUMAN HEALTH HUMAN HEALTH HUMAN HEALTH CRITERIA CRITERIA MG/L MG/L	State Chronic Agriculture mg/l	POLLUTANT
Г										
ARSENIC		0.15	0.15	0.1500	ARSENIC					ARSENIC
CADMIUM		0.007	0.000721	0.0070	CADMIUM					CADMIUM
CHROMIUM - TOTAL		0.621	0.266	0.6210	CHROMIUM - TOTAL					CHROMIUM - TOTAL
COPPER	0.0236	0.029	0.0289	0.0290	COPPER	1.3	1.3	1.3		COPPER
LEAD		0.017	0.0171	0.0170	LEAD					LEAD
MERCURY			0.000770	0.0008	MERCURY					MERCURY
MOLYBDENUM					MOLYBDENUM					MOLYBDENUM
NICKEL		0.16	0.1596	0.1600	NICKEL	0.61	0.61	0.61		NICKEL
SELENIUM	0.0041	0.0046	0.005	0.0046	SELENIUM		4.2	4.2		SELENIUM
SILVER					SILVER					SILVER
ZINC		0.368	0.3672	0.3680	ZINC		26	26		ZINC
ANTIMONY			1.6	1.6000	ANTIMONY	900.0	0.006	900.0		ANTIMONY
BERYLIUM			0.0053	0.0053	BERYLIUM	0.004	0.004	0.004		BERYLIUM
BORON					BORON				0.75	BORON
CYANIDE	0.0043				CYANIDE	0.7	0.14	0.7		CYANIDE
MANGANESE					MANGANESE		100	100	0.2	MANGANESE
SODIUM					SODIUM					SODIUM
THALLIUM					THALLIUM	0.0063		0.0063		THALLIUM
AMMONIA (AS N)			4	4.0000	AMMONIA (AS N)					AMMONIA (AS N)
BOD	25				ВОД					ВОД
CHLORIDE					CHLORIDE					CHLORIDE
NITRATE (AS N)					NITRATE (AS N)					NITRATE (AS N)
NITIRITE (AS N)					NITIRITE (AS N)					NITIRITE (AS N)
TDS					TDS					TDS
SULFATE (AS SO4)					SULFATE (AS SO4)					SULFATE (AS SO4)
MBAS					MBAS					MBAS
OIL AND GREASE	10				OIL AND GREASE					OIL AND GREASE
TSS	30				TSS					TSS

TABLE 4: INFLUENT AND EFFLUENT DATA

POLLUTANT	AVERAGE POTW INFLUENT MG/L	POTW FLOW MGD	COMMENT AND NOTES	POTW INFLUENT LBS/DAY	AVERAGE POTW EFFLUENT MG/L	POTW FLOW MGD	COMMENT AND NOTES	POTW EFFLUENT LBS/DAY	POLLUTANT
ARSENIC	0.00025	က	below detection	0.006255	0.000768	က	below detection 4 fo 5 days	0.01921536	ARSENIC
CADMIUM	0.00005	က	below detection	0.000151	0.000191	က	below detection 4 fo 5 days	0.00477882	CADMIUM
CHROMIUM - TOTAL	0.0005	က	below detection	0.01251	0.000684	က	below detection 4 fo 5 days	0.01711368	CHROMIUM - TOTAL
COPPER	0.126	3		3.15252	0.0476	3		1.190952	COPPER
LEAD	0.00211	ო		0.0527922	0.000794	က		0.01986588	LEAD
MERCURY	0.0000715	ო		0.00178893	0.0000283	က		0.00070807	MERCURY
MOLYBDENUM	0.015	က		0.3753	0.0136	က		0.340272	MOLYBDENUM
NICKEL	0.0005	က	below detection	0.01251	0.00126	က		0.0315252	NICKEL
SELENIUM	0.001	ო	below detection	0.02502	0.00304	က	below detection 4 fo 5 days	0.0760608	SELENIUM
SILVER	0.001	က	below detection 4 fo 5 days	0.02502	0.0014	က	below detection 4 fo 5 days	0.035028	SILVER
ZINC	0.124	ო		3.10248	0.0457	က		1.143414	ZINC
ANTIMONY	0.000642	က	below detection 4 fo 5 days	0.01606284	0.0005	3	below detection	0.01251	ANTIMONY
BERYLIUM	0.00005	3	below detection	0.001251	0.00005	3	below detection	0.001251	BERYLIUM
BORON	0.518	က		12.96036	0.55	က		13.761	BORON
CYANIDE	0.00228	3		0.0570456	0.00609	3	Appear to have a source of Cy in plant	0.1523718	CYANIDE
MANGANESE	0.154	က		3.85308	0.0261	က		0.653022	MANGANESE
SODIUM	221	က		5529.42	214	က		5354.28	SODIUM
THALLIUM	0.00005	က	below detection	0.001251	0.00005	3	below detection	0.001251	THALLIUM
AMMONIA (AS N)	42.3	က		1058.346	18.8	က		470.376	AMMONIA (AS N)
BOD	302	ო		7556.04	4.4	က		110.088	ВОР
CHLORIDE	300	က		7506	310	က		7756.2	CHLORIDE
NITRATE (AS N)	0.05	3		1.251	10.1	3		252.702	NITRATE (AS N)
NITIRITE (AS N)	0.05	ო		1.251	0.32	က		8.0064	NITIRITE (AS N)
TDS	1050	ო		26271	1072	က		26821.44	TDS
SULFATE (AS SO4)	145	ო		3627.9	152	က		3803.04	SULFATE (AS SO4)
MBAS		3	below detection			3	below detection		MBAS
OIL AND GREASE	26.6	က		665.532	S	က		125.1	OIL AND GREASE
TSS	301	က		7531.02	16.5	က		412.83	TSS

		USER ENTERED	FINAL			USER ENTERED			USER ENTERED		
TOTAL CURRENT SIU LOADING TO POTW	NG CONTRIBUTION TO POTW	TIC DOMESTIC TION LOADING W TO POTW	CALCULATED DOMESTIC CONTRIBUTION		COMMERCIAL USER DISCHARGE TO POTW	COMMERCIAL LOADING TO POTW	CALCULATED COMMERCIAL CONTRIBUTION	TOTAL DOMESTIC PLUS COMMERCIAL LOADING	TRUCKED AND HAULED WASTE LOADING TO POTW	UPSTREAM RECEIVING WATER	
POLLUTANT LBS/D		-	LBS/DAY	POLLUTANT	MG/L	LBS/DAY	LBS/DAY		LBS/DAY	MG/L	POLLUTANT
ARSENIC	QZ	0.0055	0.0055	ARSENIC	Q	0.0055	0.0055	0.011			ARSENIC
CADMIUM	2	0.0011	0.0011	CADMIUM	Q	0.0011	0.0011	0.0022			CADMIUM
CHROMIUM - TOTAL	Q.	0.0055	0.0055	CHROMIUM - TOTAL	Q	0.0055	0.0055	0.011			CHROMIUM - TOTAL
COPPER	0.172		3.7870272	COPPER	0.172		0.4159992	4.2030264			COPPER
LEAD	0.00125	2	0.027522	LEAD	0.00125		0.00302325	0.03054525			LEAD
MERCURY	0.0000244		0.000537229	MERCURY	0.0000244		5.90138E-05	0.000596243			MERCURY
MOLYBDENUM	Q	0.11	0.11	MOLYBDENUM	Q	0.11	0.11	0.22			MOLYBDENUM
NICKEL	2	0.0055	0.0055	NICKEL	Q	0.0055	0.0055	0.011			NICKEL
SELENIUM	Q	0.0055	0.0055	SELENIUM	Q	0.0055	0.0055	0.011			SELENIUM
SILVER	Q	0.011	0.011	SILVER	2	0.011	0.011	0.022			SILVER
ZINC	0.112		2.4659712	ZINC	0.112		0.2708832	2.7368544			ZINC
ANTIMONY	0.000632	S	0.013915123	ANTIMONY	0.000632		0.001528555	0.015443678			ANTIMONY
BERYLIUM	Q	0.0011	0.0011	BERYLIUM	Q	0.0011	0.0011	0.0022			BERYLIUM
BORON	0.556		12.2417856	BORON	0.556		1.3447416	13.5865272			BORON
CYANIDE	2	0.044	0.044	CYANIDE	Q	0.044	0.044	0.088			CYANIDE
MANGANESE	0.0152		0.33466752	MANGANESE	0.0152		0.03676272	0.37143024			MANGANESE
SODIUM	280		6164.928	SODIUM	280		677.208	6842.136			SODIUM
THALLIUM	2	0.0022	0.0022	THALLIUM	2	0.0022	0.0022	0.0044			THALLIUM
AMMONIA (AS N)	21		462.3696	AMMONIA (AS N)	21		906.7906	513.1602			AMMONIA (AS N)
ВОБ	314		6913.5264	BOD	314		759.4404	7672.9668			BOD
CHLORIDE	416		9159.3216	CHLORIDE	416		1006.1376	10165.4592			CHLORIDE
NITRATE (AS N)	QN		#VALUE!	NITRATE (AS N)	QN		#VALUE!	#VALUE!			NITRATE (AS N)
NITIRITE (AS N)	Q		#VALUE!	NITIRITE (AS N)	Q		#VALUE!	#VALUE!			NITIRITE (AS N)
SQL	1260		27742.176	TDS	1260		3047.436	30789.612			TDS
SULFATE (AS SO4)	155		3412.728	SULFATE (AS SO4)	155		374.883	3787.611			SULFATE (AS SO4)
MBAS	Q		#VALUE!	MBAS	Q		#VALUE!	#VALUE!			MBAS
OIL AND GREASE	38		836.6688	OIL AND GREASE	38		91.9068	928.5756			OIL AND GREASE
TSS	154		3390.7104	TSS	154		372.4644	3763.1748			TSS

TABLE 6: BIOSOLIDS

	WLOd	TABLE 1	TABLE 3	TABLE 2	TABLE 2	ENTER DFFAULT	H N N	
	BIOSOLIDS TO LAND APP	LAND APP	LAND APP	CUMULATIVE	SLUDGE	BIOSOLIDS	U)	
	DISPOSAL	SLUDGE	SLUDGE	APPLICATION	DISPOSAL	DISPOSAL	CRITERIA	
	MG/KG	CRITERIA	CRITERIA	RATE	CRITERIA	CRITERIA		
POLLUTANT	DRY WT.	MG/KG	MG/KG	LBS/ACRE	MG/KG	MG/KG	MG/KG	POLLUTANT
ARSENIC	6.56	75	41	37			41.00	ARSENIC
CADMIUM	18.6	82	39	35			39.00	CADMIUM
CHROMIUM - TOTAL	52.2	3000	1200	300			1200.00	CHROMIUM - TOTAL
COPPER	1330	4300	1500	1338			1500.00	COPPER
LEAD	27.2	840	300	268			300.00	LEAD
MERCURY	2.87	22	17	15			17.00	MERCURY
MOLYBDENUM	38.1	75	75				75.00	MOLYBDENUM
NICKEL	29.7	420	420	375			420.00	NICKEL
SELENIUM	37.7	100	100	88			100.00	SELENIUM
SILVER	12.1						No Criteria	SILVER
ZINC	1640	7500	2800	2495			2800.00	ZINC
ANTIMONY	2.24						No Criteria	ANTIMONY
BERYLIUM	N.D.						No Criteria	BERYLIUM
BORON							No Criteria	BORON
CYANIDE							No Criteria	CYANIDE
MANGANESE	477						No Criteria	MANGANESE
SODIUM							No Criteria	SODIUM
THALLIUM							No Criteria	THALLIUM
(ASN) AMMONIA (AS N)							No Criteria	AMMONIA (AS N)
BOD							No Criteria	ВОВ
CHLORIDE							No Criteria	CHLORIDE
NITRATE (AS N)							No Criteria	NITRATE (AS N)
NITIRITE (AS N)							No Criteria	NITIRITE (AS N)
TDS							No Criteria	TDS
SULFATE (AS SO4)							No Criteria	SULFATE (AS SO4)
MBAS							No Criteria	MBAS
OIL AND GREASE							No Criteria	OIL AND GREASE
SSL							No Criteria	TSS

The part of the								FNTER THE NAME	N T T			
Part		INFEFF	ADRE	MRE	DECILE	5		OF THE REMOVAL	ENTERED	USE		
FREMONAL REMONAL REM	_	Influent/Effluent Method	ADRE METHOD	MRE METHOD	DECILE METHOD	LITERATURE	SOURCE OF	EFFICIENCY TO BE	SLUDGE	SLUDGE	FINAL	
Efficiency Eff		Removal	REMOVAL	REMOVAL	REMOVAL	REMOVAL	LITERATURE	USED: INFEFF, ADRE, MRE,	REMOVAL	REMOVAL	POTW	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		Efficiency	EFFICIENCY	EFFICIENCY	EFFICIENCY		REMOVAL EFFICIENCY	DECILE, OR LIT		EFFICIENCY?	REMOVAL	
207 207 42 EPA LIT N -3066 62 66 66 66 66 EPA LIT N -57 62 62 60 66 67 EPA INFEFF N 60 66 60 66 62 67 EPA INFEFF N -105 60 66 67 EPA INFEFF N -204 66 60 67 EPA INFEFF N -40 63 63 63 EPA INFEFF N -204 60 60 EPA INFEFF N -40 63 63 EPA INFEFF N -167 60 60 EPA INFEFF N -167 60 60 EPA INFEFF N -167 60 60 EPA INFEFF N -168 60 60	_	%	%	%	%	%	DATA		%	Y/N	%	POLLUTANT
-207 -307 62 66 EPA LIT N -57 62 62 60 EPA NIT N 60 62 62 62 64 EPA NIT N 60 62 62 62 62 64 N	_											
3.065 6.2 6.2 6.6 EPA UIT N N EFF C N N EFF C N N EFF C N N EFF N N		-207				42	EPA	片		z	42	ARSENIC
1.17 1.17	_	-3065				89	EPA	H		z	89	CADMIUM
Color Colo		-37				09	EPA	片		z	09	CHROMIUM - TOTAL
Color		62	62	62		09	EPA	INFEFF		z	62	COPPER
Fig. 10 Fig.	_	62	62	62		62	EPA	INFEFF		z	62	LEAD
19	_	09	26	09		65	EPA	INFEFF		z	09	MERCURY
-152 -204 -40 -63 -63 -63 -63 -63 -60 -60 -60 -60 -60 -60 -60 -60 -60 -60	_	6	6	6		23	EPA	INFEFF		>	6	MOLYBDENUM
-204		-152				41	EPA	LIT		z	41	NICKEL
Harrier Hunthent Effluent Data Prevents Reff Calc 190	5	-204				52	EPA	片		z	25	SELENIUM
Sample S	~	-40				89	EPA	片		z	89	SILVER
22 INFEFF	()	63	63	63		59	EPA	INFEFF		z	63	ZINC
1		22						INFEFF		z	22	ANTIMONY
167	_	0						INFEFF		z	0	BERYLIUM
167 167	_	0	9-	-6.0				INFEFF		z	0	BORON
83 81 83.0 INFEFF N 3 3.5 3.8 N N 56 99 99.0 0.0 INFEFF N -20100 1 0.0 IT N -2 -2 0.0 IT N -5 0.0 0.0 IT N -5 0.0 IT N -6 0.0 IT N -6 0.0 IT N -7 0.0 IT N -8 0.0 IT N -9 0.0 IT N -9 0.0 IT N -0 0.0 IT N		-167				0.0	EPA	LIT		z	0	CYANIDE
3.5 3.8 NEFF NHEFF		83	81	83.0				INFEFF		z	83	MANGANESE
0 INFEFF NATIONAL CALL CALL CALL CALL CALL CALL CALL C	_	8	3.5	3.8				INFEFF		z	က	SODIUM
56 99 99.0 99.0 NFFF N -3 LIT N N N -20100 LIT N N -2 LIT N N -2 LIT N N -5 LIT N N -5 LIT N N -6 LIT N N -7 LIT N N -8 95.0 95.0 Plant Reports LIT N	_	0						INFEFF		z	0	THALLIUM
99 99 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	56						INFEFF		z	26	AMMONIA (AS N)
-3 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	Ω	66	66	0.66				INFEFF		z	66	BOD
-20100 -20100 N -540 N	Ш	6-				0.0		5		z	0	CHLORIDE
-540 -540 -5 -2 -2 Influent-Effluent Data Prevents Reff Calc 950 Plant Reports -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	=	-20100				0.0		LIT		z	0	NITRATE (AS N)
-2 LIT N N N LIT N N N N N N N N N N N N N N N N N N N	<u>-</u>	-540				0.0		5		z	0	NITIRITE (AS N)
-5 Influent-Effluent Data Prevents Reff Calc N N NFEFF N N N N N N N N N N N N N N N	S	-2				0.0		片		z	0	TDS
Influent-Effluent Data Prevents Reff Calc		-5-				0.0		5		z	0	SULFATE (AS SO4)
81 INFEFF 85 95 95 95 95 Plant Reports LIT	프	fluent-Effluent Data Prevents Reff Calc								z	NO DATA MBAS	MBAS
95 95 950 Plant Reports LIT	ш	81						INFEFF		z	81	OIL AND GREASE
	S	95	92	95.0		95.0	Plant Reports	5		z	92	TSS

DAILY TABLE 8: MAHL CALCULATIONS

				OTHER CRITERIA			
				FROM Daily Criteria&Stds		NAME OF	
	Daily/7 day			COLUMN H	MOST	MAHL	
	NPDES	ACUTE	LOADING		STRINGENT	FOR DAILY MAX	
POLLUTANT	LOADING LBS/DAY	LOADING LBS/DAY	FOR MCL LBS/DAY		CRITERIA LBS/DAY	LIMITS	POLLUTANT
ARSENIC	666666	14.66689655	0.43137931	666666	0.43137931	MCL	ARSENIC
CADMIUM	666666	1.56375	0.3909375	666666	0.3909375	MCL	CADMIUM
CHROMIUM - TOTAL	666666	323.3835	3.1275	666666	3.1275	MCL	CHROMIUM - TOTAL
COPPER	3.139274118	3.245241176	86.09823529	666666	3.139274118	NPDES Daily	COPPER
LEAD	666666	29.25512343	0.997333753	666666	0.997333753	MCL	LEAD
MERCURY	666666	666666	0.126426148	666666	0.126426148	MCL	MERCURY
MOLYBDENUM	666666	666666	666666	666666	No Criteria	No Criteria	MOLYBDENUM
NICKEL	666666	61.48983051	4.240677966	666666	4.240677966	MCL	NICKEL
SELENIUM	0.427425	1.0425	2.60625	666666	0.427425	NPDES Daily	SELENIUM
SILVER	666666	2.873892188	7.81875	666666	2.873892188	WQ-ACUTE	SILVER
ZINC	666666	24.91488315	339.4398249	666666	24.91488315	WQ-ACUTE	ZINC
ANTIMONY	666666	289.13112	0.19275408	666666	0.19275408	MCL	ANTIMONY
BERYLIUM	666666	3.2526	666666	666666	3.2526	WQ-ACUTE	BERYLIUM
BORON	666666	666666	666666	666666	No Criteria	No Criteria	BORON
CYANIDE	0.21267	666666	3.753	666666	0.21267	NPDES Daily	CYANIDE
MANGANESE	666666	666666	29.52551724	666666	29.52551724	MCL	MANGANESE
SODIUM	5803.608247	666666	666666	666666	5803.608247	NPDES Daily	SODIUM
THALLIUM	666666	666666	0.05004	666666	0.05004	MCL	THALLIUM
AMMONIA (AS N)	666666	666666	666666	666666	No Criteria	No Criteria	AMMONIA (AS N)
BOD	85864.09091	666666	666666	666666	85864.09091	NPDES Daily	ВОД
CHLORIDE	7756.277563	666666	666666	666666	7756.277563	NPDES Daily	CHLORIDE
NITRATE (AS N)	666666	666666	666666	666666	No Criteria	No Criteria	NITRATE (AS N)
NITIRITE (AS N)	666666	666666	666666	666666	No Criteria	No Criteria	NITIRITE (AS N)
TDS	27522.27522	666666	666666	666666	27522.27522	NPDES Daily	TDS
SULFATE (AS SO4)	4503.645036	666666	666666	666666	4503.645036	NPDES Daily	SULFATE (AS SO4)
MBAS	666666	666666	666666	666666	No Criteria	No Criteria	MBAS
OIL AND GREASE	2662.128	666666	666666	666666	2662.128	NPDES Daily	OIL AND GREASE
TSS	45036	666666	666666	666666	45036	NPDES Daily	TSS

MONTHLY
TABLE 9: MAHL CALCULATIONS

NAME OF The CHEONIC CONTRINE		MONTHLY				OTHER CRITIERIA				
MOTIVATION CHRONIC LOADING COLUMN COLUMN COLUMN CHRONIC COLUMN COLUMN CHRONIC COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN CARRELING COLUMN COLUMN CARRELING COLUMN COLUMN CARRELING CARRELING COLUMN CARRELING COLUMN CARRELING COLUMN CARRELING COLUMN CARRELING COLUMN CARRELING CARRELING COLUMN CARRELING CARRELING COLUMN CARRELING						FROM Mo Criteria&Stds	TABLE 1, 2, 3 OR		NAME OF	
NPDES Toxicity FOR HUMAN State SLUDGE STRINGEN For CADING CRITERIA Monthly ILBS/DAY LBS/DAY			Monthly	CHRONIC	LOADING	Column K	OTHER	MOST	MAHL	
ARSENIC LOADING LEASIDAY <			NPDES	Toxicity	FOR HUMAN	State	SLUDGE	STRINGENT	For	
POLLUTANIT LBS/DAY LIMITS LBS/DAY LBS/DAY LIMITS LBS/DAY LBS/DA			LOADING	Loading	HEALTH	Chronic Agriculture	LOADING	CRITERIA	Monthly	
ARSENIC 999999 0.13250175 0.13250175 Discolutes CADMIUM. TOTAL 999999 0.6473125 999999 0.077847154 Blosolids CADMIUM. TOTAL 999999 0.6473125 999999 3.272146875 1.650014118 NPDES Monthly CADMIUM. TOTAL 999999 1.130311687 999999 3.272146875 1.650014118 NPDES Monthly LEAD 999999 1.130311687 999999 0.04874954 0.038190757 Blosolids MOLYRELL 999999 0.048674067 999999 0.038190775 Blosolids MOLYRELL 999999 0.048674067 999999 0.038190775 Blosolids NOCKARIA 0.0239774 2.18.925 999999 0.04874067 Blosolids SELENIUM 0.137125 0.2239774 2.18.925 999999 0.0410716628 Blosolids SINCR 999999 0.1371040 999999 9.99999 0.190716628 Blosolids SINCR 9999999 0.137104087 999999 0.14071607764		POLLUTANT	LBS/DAY	LBS/DAY	LBS/DAY	l/gm	LBS/DAY	LBS/DAY	Limits	POLLUTANT
CHROMIUM - TOTAL 999999 0.4773125 999999 9999999 0.77247154 Dissolities CHROMIUM - TOTAL 999999 3.8 4335 999999 999999 2.71467 2.71467 Ebiconicis CODPER 1.53014118 1.300141657 999999 3.277467 2.71467 Biconicis CODPER 1.53014118 1.30014657 999999 0.048674067 999999 0.038190757 0.038190757 Biconicis MERCURY 9999999 0.048674067 999999 999999 0.0381907757 0.038190757 Biconicis MICKEL 999999 0.048674067 2.88813559 999999 1.0900716525 1.0900716525 Biconicis SELENUM 0.2137125 0.238077 2.18.925 999999 1.0900716525 Biconicis SELENUM 0.2137126 0.238077 2.18.925 999999 1.000071652 Biconicis SELENUM 0.10778 0.10708 999999 0.10008 1.000071652 1.000071652 Biconicis SELENUM 0.10778 0.1				10000				1	: :	
CHROMIUM, TOTAL 999999 0.57747132 999999 0.577471474 Biocolidis CADMIUM, TOTAL 999999 0.547677312 999999 0.577474714 Incoming COPPER 1.650014118 1.920652941 86.09823629 9999999 0.058190757 1.563014118 INDES Monthly MARCHER 9999999 1.13011687 9999999 0.04814075 2.71447 Biosolidis MARCHER 9999999 0.048674067 2.999999 9.999999 1.3004715625 1.090715625 1.090715625 1.090716626 1.090716626 1.090716626 1.09071666 1.09071662 1.09071666 1.09071662 1.09071666 1.09071666 1.09071666 1.09071666 1.09071667 1.09071666 </th <th></th> <th>ARSENIC</th> <th>88888</th> <th>6.470689655</th> <th>66666</th> <th>55555</th> <th>0.13250175</th> <th>0.13250175</th> <th>Biosolids</th> <th>ARSENIC</th>		ARSENIC	88888	6.470689655	66666	55555	0.13250175	0.13250175	Biosolids	ARSENIC
CHROMIUM - TOTAL 898999 3.8,4435 998999 3.2,71467 15,6301418 No. Chieva LEAD QORDES 13,6601428 13,6601428 13,6601428 13,6601428 15,6601418 No. Chieva LEAD QORDES 1,130311587 998999 0.038190757 0.		CADMIUM	666666	0.5473125	666666	666666	0.077847154	0.077847154	Biosolids	CADMIUM
COPPER 1.563014118 1.920662941 1.61098999 3.272146875 1.563014118 NPDES Monthly MERCURY 999999 999999 0.6622882261 0.65288261 0.652882261 0.652882261 0.652882261 0.6528826261 0.6528826261 0.6528826261 0.6528826261 0.6528826261 0.6528826261 0.6528826261 0.6528826261 0.6528826261 0.6528826261 0.6528826261 0.65288262		CHROMIUM - TOTAL	666666	38.84355	666666	666666	2.71467	2.71467	Biosolids	CHROMIUM - TOTAL
LEAD 999999 1,130311587 999999 999999 0,652882261 0,652882261 Biosolids MCRECURY 999999 1,048674067 999999 999999 1,000715625 1,000715625 Biosolids MCLYBDENUM 999999 6,748674067 25,86813589 999999 1,090715625 1,090715625 Biosolids SELENIUM 0,2137125 0,239775 218,925 999999 1,390440732 1,390440732 Biosolids SINCR 999999 2,48277112 176,060709 999999 0,261026962 0,2137125 NPDES Monthly ANTIMONY 999999 6,1407086 0,10008 999999 0,13270408 HH BERYLLIUM 999999 6,1407086 0,10008 999999 0,137264 NPDES Monthly BERYLLIUM 999999 1,1402,75862 29,52551724 0,10008 HH CYANDIA 999999 1,1402,75862 999999 999999 0,107586 NPDES Monthly MANICARESE 999999 1,1402,75862 9999999		COPPER	1.563014118	1.920652941	86.09823529	666666	3.272146875	1.563014118	NPDES Monthly	COPPER
MERCURY 999999 0.048674067 999999 0.038190757 0.038190757 Blosolids MOLYBEDENIUM 9999999 0.999999 1.090716525 1.090716525 Blosolids SELVER 9999999 2.86813569 9999999 1.300440732 1.30440732 Blosolids SILVER 999999 9999999 0.2137125 0.23377 2.8.6613569 9999999 0.02140732 1.30440732 Blosolids ANTIMONY 999999 2.4.9827712 1765.08709 9999999 0.10275403 9999999 0.100008 9999999 0.100008 PHH BORON 999999 0.10275408 9999999 1.7.514 9999999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.9099999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.909999 1.9099999 1.909999 1.9099999 1.9099999		LEAD	666666	1.130311587	666666	666666	0.652882261	0.652882261	Biosolids	LEAD
MOLYBDENUM 999999 999999 1,090715625 1,090715625 Biosolids NICKEL 999999 6,78604474 2,5,86813559 999999 1,390440732 1,390440732 Biosolids SELNUM 0,2137125 0,223771 2,18,925 999999 999999 1,390440732 1,390440732 Blosolids SILVER 9999999 2,4,98277112 1,765,08709 999999 999999 1,390440732 1,390440732 1,390440732 1,390440732 1,390440732 1,390440732 1,390440732 1,390440732 1,39044073 1,390440732 1,390440732 1,390440732 1,390440732 1,390440732 1,390440732 1,390440732 1,39044073 1,390440732 1,39049099 1,3909999 1,39099999 <th></th> <th>MERCURY</th> <th>666666</th> <th>0.048674067</th> <th>666666</th> <th>666666</th> <th>0.038190757</th> <th>0.038190757</th> <th>Biosolids</th> <th>MERCURY</th>		MERCURY	666666	0.048674067	666666	666666	0.038190757	0.038190757	Biosolids	MERCURY
NICKEL 999999 6.785084746 25.86813559 9999999 1.390440732 1.390440732 Biosolids Biosolids SELENIUM 0.2137125 0.239775 2.18,525 9999999 0.261025962 0.2137125 NPDES Monthly No Criteria SILVER 9999999 2.186271712 1765.08709 9999999 No Criteria No Crit		MOLYBDENUM	999999	999999	666666	666666	1.090715625	1.090715625	Biosolids	MOLYBDENUM
SELENIUM 0.2137125 0.239775 218.925 999999 999999 0.261025962 0.2137125 ND Criteria SILVER 999999 24.9827711 176.03709 999999 6.018731954 6.018731954 Blocolids ANTIMONY 999999 14.4101088 0.10008 999999 9.99999 0.1277408 999999 0.10008 HH BCROLIUM 999999 0.10008 17.514 999999 18.765 999999 0.10008 HH BCROLIUM 999999 0.10008 17.514 999999 18.765 0.10008 HH BCROLIUM 999999 0.10008 17.514 999999 18.765 0.10008 HH MANGANESE 0.10786 999999 17.514 999999 18.765 0.10008 HH AMMONIA (AS IN) 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 9999999 9999999 9999999 9999		NICKEL	666666	6.785084746	25.86813559	666666	1.390440732	1.390440732	Biosolids	NICKEL
SILVER 999999 999999 999999 999999 999999 No Criteria		SELENIUM	0.2137125	0.239775	218.925	666666	0.261025962	0.2137125	NPDES Monthly	SELENIUM
ANTIMONY 999999 24.38277112 1765.08709 9999999 6.018731954 6.018731954 Biosolids BERYLLUM 999999 51.40108 0.13275408 999999 999999 0.10008 HH BORDON 999999 0.13266 0.10008 117.514 999999 0.10008 HH BORDON 9999999 17.514 999999 0.10008 NPDES Monthly AMANGARIS 9999999 17.514 9999999 0.107586 OTHER AMANONIA (AS N) 999999 17.514 999999 999999 0.157626 OTHER AMMONIA (AS N) 999999 17.514 999999 999999 0.157626 PH AMMONIA (AS N) 999999 225.18 999999 999999 999999 0.157626 PH AMMONIA (AS N) 999999 999999 999999 999999 999999 9099999 9099999 9099999 9099999 9099999 9099999 9099999 No Criteria No Criteria No Criteria <t< th=""><th></th><th>SILVER</th><th>666666</th><th>666666</th><th>666666</th><th>666666</th><th>666666</th><th>No Criteria</th><th>No Criteria</th><th>SILVER</th></t<>		SILVER	666666	666666	666666	666666	666666	No Criteria	No Criteria	SILVER
ANTIMONY 999999 51.40108B 0.1927540B 999999 999999 0.1927540B HH BERYLIUM 999999 0.132606 0.1000B 18.765 999999 0.1000B HH BORON 999999 999999 17.514 999999 0.1000B HH CYANIDE 0.107586 999999 17.514 999999 0.107586 NPDES Monthly SODIUM 999999 999999 1.4762.75862 29.5251724 999999 0.0145782 OTHER SODIUM 999999 999999 0.157626 999999 0.157626 HH AMMONIA (AS N) 999999 0.157626 9999999 999999 999999 999999		ZINC	666666	24.98277112	1765.08709	666666	6.018731954	6.018731954	Biosolids	ZINC
BERYLIUM 999999 0.132606 0.10008 999999 18.765 999999 18.765 OTHER DOTHER BORON 999999 999999 17.514 999999 18.765 OTHER DOTHER BORON 999999 17.514 999999 17.514 999999 O.107586 OTHER DOTHER SODIUM 999999 999999 14.762.75862 29.52551724 OTHER DOTHER OTHER DOTHER AMMONIA (AS N) 999999 14.762.75862 29.99999 999999 O.157626 999999 O.157626 O.157626 999999 O.157626 OTHER DOTHER NO.CHIERIA NO.CHIERIA <td< th=""><th></th><th>ANTIMONY</th><th>666666</th><th>51.401088</th><th>0.19275408</th><th>666666</th><th>666666</th><th>0.19275408</th><th>壬</th><th>ANTIMONY</th></td<>		ANTIMONY	666666	51.401088	0.19275408	666666	666666	0.19275408	壬	ANTIMONY
BORON 999999 18.765 999999 18.765 999999 18.765 OTHER CYANIDE 0.107586 999999 17.514 999999 909999 0.107586 NPDES Monthly MANGANESE 999999 17.514 999999 17.514 999999 0.107586 NPDES Monthly SODIUM 999999 999999 0.157626 999999 999999 NO Criteria NO Criteria NO Criteria AMMONIA (AS N) 999999 225.18 999999 999999 999999 999999 999999 999999 999999 NO Criteria NO Criteria MITRATE (AS N) 999999 999999 999999 999999 999999 999999 999999 999999 NO Criteria NO Criteria NO Criteria SULFATE (AS SO A) 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 9999999 9999999 9999999 9999999		BERYLIUM	666666	0.132606	0.10008	666666	666666	0.10008	壬	BERYLIUM
CYANIDE 0.107586 999999 17.514 999999 999999 0.107586 INPDES Monthly MANGANESE 999999 14762.75862 29.52551724 999999 0.107586 ND Criteria		BORON	666666	666666	666666	18.765	666666	18.765	OTHER	BORON
MANGANESE 999999 14762.75862 29.5251724 999999 29.52551724 OTHER SODIUM 999999 999999 999999 999999 NO Criteria NO Criteria NO Criteria THALLIUM 999999 0.157626 999999 999999 0.157626 999999 0.157626 HH AMMONIA (AS N) 999999 225.18 9999999 9999999 9999999		CYANIDE	0.107586	999999	17.514	666666	666666	0.107586	NPDES Monthly	CYANIDE
SODIUM 999999 999999 999999 999999 No Criteria		MANGANESE	666666	666666	14762.75862	29.52551724	666666	29.52551724	OTHER	MANGANESE
THALLIUM 999999 0.157626 HH AMMONIA (AS N) 999999 225.18 0.157626 HH BOD 42932.04545 999999 999999 999999 999999 MO-CHRONIC CHLORIDE 999999 999999 999999 999999 999999 MO-Criteria No Criteria NITRATE (AS N) 999999 999999 999999 999999 999999 999999 NITRATE (AS N) 999999 999999 999999 999999 999999 No Criteria No Criteria NITRATE (AS N) 999999 999999 999999 999999 999999 999999 No Criteria No Criteria NITRATE (AS N) 999999 999999 999999 999999 999999 999999 No Criteria No Criteria No Criteria NITRATE (AS NO) 999999 999999 999999 999999 999999 999999 999999 No Criteria No Criteria ALATE (AS NO) 999999 999999 999999 999999<		SODIUM	666666	666666	666666	666666	666666	No Criteria	No Criteria	SODIUM
AMMONIA (AS N) 999999 225.18 WQ-CHRONIC BOD 42932.04545 999999 999999 999999 999999 WQ-CHRONIC CHLORIDE 999999 999999 999999 999999 No Criteria No Criteria No Criteria NITRATE (AS N) 999999 999999 999999 999999 999999 999999 999999 999999 No Criteria No C		THALLIUM	666666	666666	0.157626	666666	666666	0.157626	壬	THALLIUM
BOD 42932.04545 999999 999999 999999 42932.04545 NPDES Monthly CHLORIDE 999999 999999 999999 999999 999999 NO Criteria	~	AMMONIA (AS N)	666666	225.18	666666	666666	666666	225.18	WQ-CHRONIC	AMMONIA (AS N)
CHLORIDE 999999 999999 999999 999999 NO Criteria	nd	BOD	42932.04545	666666	666666	666666	666666	42932.04545	NPDES Monthly	ВОВ
NITRATE (AS N) 999999 999999 999999 999999 999999 NO Criteria NO Criteria <th>a lf</th> <th>CHLORIDE</th> <th>666666</th> <th>666666</th> <th>666666</th> <th>666666</th> <th>666666</th> <th>No Criteria</th> <th>No Criteria</th> <th>CHLORIDE</th>	a lf	CHLORIDE	666666	666666	666666	666666	666666	No Criteria	No Criteria	CHLORIDE
NITIRITE (AS N) 999999 999999 999999 999999 NO Criteria NO Criteria TDS 999999 999999 999999 999999 999999 NO Criteria NO Criteria SULFATE (AS SO4) 999999 999999 999999 NO Criteria NO Criteria MBAS 999999 999999 999999 999999 NO Criteria NO Criteria ALSO LAND GREASE 1331.064 999999 999999 999999 999999 1301.064 NPDES Monthly	on	NITRATE (AS N)	666666	666666	666666	666666	666666	No Criteria	No Criteria	NITRATE (AS N)
TDS 999999 999999 999999 999999 No Criteria No Criteria SULFATE (AS SO4) 999999 999999 999999 999999 999999 No Criteria No Criteria MBAS 999999 999999 999999 999999 No Criteria No Criteria OIL AND GREASE 1331.064 999999 999999 999999 1331.064 NPDES Monthly	. #/	NITIRITE (AS N)	666666	666666	666666	666666	666666	No Criteria	No Criteria	NITIRITE (AS N)
SULFATE (AS SO4) 999999 999999 999999 999999 999999 No Criteria No Criteria MBAS 999999 999999 999999 999999 No Criteria No Criteria OIL AND GREASE 1331.064 999999 999999 999999 1331.064 NPDES Monthly TSS 15012 999999 999999 999999 15012 NPDES Monthly	14	TDS	666666	666666	666666	666666	666666	No Criteria	No Criteria	TDS
MBAS 999999 999999 999999 999999 No Criteria No Criteria No Criteria OIL AND GREASE 1331.064 999999 999999 999999 999999 1331.064 NPDES Monthly TSS 15012 999999 999999 999999 15012 NPDES Monthly	Da	SULFATE (AS SO4)	666666	666666	666666	666666	666666	No Criteria	No Criteria	SULFATE (AS SO4)
OIL AND GREASE 1331.064 999999 999999 999999 999999 1331.064 NPDES Monthly TSS 15012 999999 999999 999999 15012 NPDES Monthly	ae	MBAS	666666	666666	666666	666666	666666	No Criteria	No Criteria	MBAS
TSS 15012 999999 999999 999999 15012 NPDES Monthly	Q 7	OIL AND GREASE	1331.064	666666	666666	666666	666666	1331.064	NPDES Monthly	OIL AND GREASE
	of '	TSS	15012	666666	666666	666666	666666	15012	NPDES Monthly	TSS

MINUS THE HAULED WASTE .245896659 0.113751575 0.067862439 0.560072035 0.0338344520.871644063 2.575502969 2.950887559 0.1595635490 Discharge 0 Discharge 0 Discharge 0 Discharge 18845.70087 0 Discharge 340.5525328 0.18684125 10120.0896 No Criteria 4.6467144 0.0528274 No Criteria No Criteria 26.238298 2.437703 361.2888 LBS/DAY 0.088972 0.042836 -OR HAULED RESERVED WASTE lbs/d MASS Commercial + SIUs MAL is for Allowable Load 0.871644063 0.560072035 0.033834452 2.575502969 2.950887559 0.159563549 0.113751575 0 Discharge 18845.70087 340.5525328 0.067862439 0.18684125 0 Discharge 0 Discharge 0 Discharge 0 Discharge No Criteria 4.6467144 0.0528274 No Criteria No Criteria 2.437703 26.238298 Maximum LBS/DAY 0.088972 0.042836 0.871644063 DOM + COM 0.560072035 0.033834452 2.575502969 2.950887559 MAHL minus 0.113751575 0.067862439 0.159563549 340.5525328 0 Discharge 0.18684125 0 Discharge 18845.70087 0 Discharge No Criteria 4.6467144 Discharge No Criteria 0 Discharge No Criteria LOADING 0.0528274 26.238298 2.437703 LBS/DAY 0.088972 0.042836 ENTER A "N" FOR Commercial Limit ENTER "Y" FOR for a SIU and a SIU Limit Only 0.981644063 5.416858759 0.173478672 0.119251575 0.070062439 1.406712706 0.587594035 0.034371681 2.586502969 3980.649806 EXPANSION 26.57296552 5223.247423 25759.22727 1053.280533 MAHL WITH 0.19234125 No Criteria No Criteria 24770.0477 No Criteria 1197.9576 0.0968274 2.443203 FACTOR LBS/DAY 0.090072 0.045036 16.8885 202.662 13510.8 MAX LIMITS FACTOR % FOR DAILY EXPANSION SAFETY/ 5 5 9 9 9 10 10 5 5 5 5 5 9 40 10 9 9 9 9 10 5 5 NPDES Monthly NPDES Monthly NPDES Monthly NPDES Monthly NPDES Monthly NPDES Monthly WQ-CHRONIC Biosolids **NPDES Daily** NPDES Daily NPDES Daily **WQ-ACUTE NPDES Daily FOR MAHL** Biosolids Biosolids No Criteria No Criteria No Criteria Biosolids Biosolids Biosolids Biosolids Biosolids OTHER Name 王 MCL **LOCAL LIMITS** 1.090715625 1.563014118 2.873892188 6.018731954 5803.608247 42932.04545 7756.277563 27522.27522 4503.645036 0.077847154 0.038190757 0.19275408 29.52551724 MAHL FOR 0.652882261 0.13250175 0.2137125 No Criteria No Criteria No Criteria 0.107586 1331.064 2.71467 0.10008 18.765 0.05004 225.18 FINAL ## AMMONIA (AS N)
AMMONIA (AS N)
CHLORIDE
CHLORIDE
CHLORIDE
TAS N)
TAS NO Criteria
TAS SO4)
TAS NO Criteria
TAS SO4)
TAS SO4)
TAS NO Criteria
TAS NO Criteria
TAS NO Criteria
TAS NO Criteria 1.56301412 MERCURY 0.03819076 MOLYBDENUM 1.09071563 1.39044073 2.87389219 ANTIMONY 0.19275408 0.13250175 CADMIUM 0.07784715 LEAD 0.65288226 ZINC 6.01873195 SELENIUM 0.2137125 0.107586 2.71467 0.10008 1331.064 Stringent 18.765 15012 Most MAHL ol and grease TSS ARSENIC CHROMIUM - TOTAL COPPER SILVER BERYLIUM CYANIDE **POLLUTANT** NICKEL BORON

TABLE 10: DAILY LOCAL LIMITS

TABLE 10: DAILY LOCAL LIMITS (cont'd)

CALCIII ATED	UNIFORM	LOCAL LIMITS	FOR SIUs	MG/L	0.171	0.102	3.664	0 Discharge	0.842	0.051	1.310	1.873	0.281	3.871	4.436	0.240	0.134	6.985	0.079	39.439	0 Discharge	0.064	0 Discharge	28327.472	0 Discharge	No Criteria	No Criteria	0 Discharge	962.831	No Criteria	543.063	15211.775
MAIL	Calculated	ALLOCATION	FOR SIUs	LBS/DAY	0.113751575	0.067862439	2.437703	0 Discharge	0.560072035	0.033834452	0.871644063	1.245896659	0.18684125	2.575502969	2.950887559	0.159563549	0.088972	4.6467144	0.0528274	26.238298	0 Discharge	0.042836	0 Discharge	18845.70087	0 Discharge	No Criteria	No Criteria	0 Discharge	640.5525328	No Criteria	361.2888	10120.0896
MACL	Calculated	ALLOCATION	FOR COMMERCIAL	LBS/DAY	ischarge b/c SIU Allocal	√Z V	ischarge b/c SIU Alloca	0 Discharge	ischarge b/c SIU Alloca	ischarge b/c SIU Allocal	ischarge b/c SIU Allocal	ischarge b/c SIU Alloca	ischarge b/c SIU Allocal	ischarge b/c SIU Allocal	ischarge b/c SIU Alloca	ischarge b/c SIU Alloca	ischarge b/c SIU Alloca	ischarge b/c SIU Allocal	ischarge b/c SIU Alloca	ischarge b/c SIU Alloca	0 Discharge	ischarge b/c SIU Allocal	0 Discharge	ischarge b/c SIU Allocal	0 Discharge	No Criteria	No Criteria	0 Discharge	ischarge b/c SIU Allocal	No Criteria	ischarge b/c SIU Allocal	ischarge b/c SIU Alloca
Percentage of Mal that	will be	allocated to	Commercial Users	%	0.0	n/a	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
If setting	Enter % of MAL to	allocate to SIUs	Enter 100% if no Commercial Limi	%	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
If you are adopting	then these are the	loadings from		lbs/day	0.0055		0.0055	0.4159992	0.00302325	5.90138E-05	0.11	0.0055	0.0055	0.011	0.2708832	0.001528555	0.0011	1.3447416	0.044	0.03676272	677.208	0.0022	9062'09	759.4404	1006.1376	#VALUE!	#VALUE!	3047.436	374.883	#VALUE!	91.9068	372.4644
			: 111	POLLUTANT	ARSENIC	CADMIUM	CHROMIUM - TOTAL	COPPER	LEAD	MERCURY	MOLYBDENUM	NICKEL	SELENIUM	SILVER	ZINC	ANTIMONY	BERYLIUM	BORON	CYANIDE	MANGANESE	SODIUM	THALLIUM	AMMONIA (AS N)	BOD	CHLORIDE	NITRATE (AS N)	NITIRITE (AS N)	TDS	SULFATE (AS SO4)	MBAS	OIL AND GREASE	TSS

California Regional Water Quality Control Board Central Coast Region

895 Aerovista Place, Suite 101, San Luis Obispo, California 93401-7906 (805) 549-3147 • Fax (805) 543-0397 http://www.waterboards.ca.gov/centralcoast

Linda S. Adams
Secretary for
Environmental Protection

RECEIVED

September 15, 2009

SEF 1 7 7009

ex Pasa Robies

mail - Modes Dept

Mayor Duane Picanco and City Council City of El Paso de Robles 1000 Spring Street Paso Robles, CA 93446

Dear Honorable Mayor and City Council members:

SUPPORT FOR INDUSTRIAL WASTE DISCHARGE ORDINANCE

We understand your staff is requesting adoption of an industrial waste ordinance. Source control is a cost-effective way to improve the quality of your wastewater discharge and prevent damage to the treatment plant. The ordinance seems to present an environmentally and economically sensible approach to pollution control. The Water Board shares your staff's desires for source control, clean water, and good sanitation. People need clean water and proper sanitation. Making good investments up front can alleviate avoidable impacts and expenses later. We encourage you to approve the ordinance. Thank you for your consideration.

Sincerely,

Roger W. Briggs Executive Officer

TJK 101-01

Paso Robles WWTP

S:\NPDES\NPDES Facilities\San Luis Obispo Co\Paso Robles WWTP\Support for source control ordinance.doc

cc: Doug Monn, Public Works Director

City of El Paso de Robles

1000 Spring Street

Paso Robles, CA 93446